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Preface to Fourth Edition

When I told a friend that I was working on a new edition, he asked me what
had changed in quantum physics during the last ten years. In one sense very
little: quantum mechanics is a very well established theory and the basic ideas
and concepts are little changed from what they were ten, twenty or more years
ago. However, new applications have been developed and some of these have
revealed aspects of the subject that were previously unknown or largely ignored.
Much of this development has been in the field of information processing, where
quantum effects have come to the fore. In particular, quantum techniques appear
to have great potential in the field of cryptography, both in the coding and possible
de-coding of messages, and I have included a chapter aimed at introducing this
topic.

I have also added a short chapter on relativistic quantum mechanics and
introductory quantum field theory. This is a little more advanced than many of
the other topics treated, but I hope it will be accessible to the interested reader.
It aims to open the door to the understanding of a number of points that were
previously stated without justification.

Once again, I have largely re-written the last chapter on the conceptual
foundations of the subject. The twenty years since the publication of the first
edition do not seem to have brought scientists and philosophers significantly
closer to a consensus on these problems. However, many issues have
been considerably clarified and the strengths and weaknesses of some of the
explanations are more apparent. My own understanding continues to grow, not
least because of what I have learned from formal and informal discussions at the
annual UK Conferences on the Foundations of Physics.

Other changes include a more detailed treatment of tunnelling in chapter 2,
a more gentle transition from the Born postulate to quantum measurement theory
in chapter 4, the introduction of Dirac notation in chapter 6 and a discussion of
the Bose–Einstein condensate in chapter 10.

I am grateful to a number of people who have helped me with this edition.
Glenn Cox shared his expertise on relativistic quantum mechanics when he
read a draft of chapter 11; Harvey Brown corrected my understanding of the
de Broglie–Bohm hidden variable theory discussed in the first part of chapter 13;
Demetris Charalambous read a late draft of the whole book and suggested several

xi



xii Preface to Fourth Edition

improvements and corrections. Of course, I bear full responsibility for the final
version and any remaining errors.

Modern technology means that the publishers are able to support the book at
the web site http://bookmarkphysics.iop.org/bookpge.htm/book=1107p. This is
where you will find references to the wider literature, colour illustrations, links to
other relevant web sites, etc. If any mistakes are identified, corrections will also
be listed there. Readers are also invited to contribute suggestions on what would
be useful content. The most convenient form of communication is by e-mail to
0750308397@bookmarkphysics.iop.org.

Finally I should like to pay tribute to Ann for encouraging me to return to
writing after some time. Her support has been invaluable.

Alastair I. M. Rae
2002



Preface to Third Edition

In preparing this edition, I have again gone right through the text identifying
points where I thought the clarity could be improved. As a result, numerous
minor changes have been made. More major alterations include a discussion
of the impressive modern experiments that demonstrate neutron diffraction by
macroscopic sized slits in chapter 1, a revised treatment of Clebsch–Gordan
coefficients in chapter 6 and a fuller discussion of spontaneous emission in
chapter 8. I have also largely rewritten the last chapter on the conceptual problems
of quantum mechanics in the light of recent developments in the field as well as of
improvements in my understanding of the issues involved and changes in my own
viewpoint. This chapter also includes an introduction to the de Broglie–Bohm
hidden variable theory and I am grateful to Chris Dewdney for a critical reading
of this section.

Alastair I. M. Rae
1992
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Preface to Second Edition

I have not introduced any major changes to the structure or content of the book,
but I have concentrated on clarifying and extending the discussion at a number
of points. Thus the discussion of the application of the uncertainty principle
to the Heisenberg microscope has been revised in chapter 1 and is referred to
again in chapter 4 as one of the examples of the application of the generalized
uncertainty principle; I have rewritten much of the section on spin–orbit coupling
and the Zeeman effect and I have tried to improve the introduction to degenerate
perturbation theory which many students seem to find difficult. The last chapter
has been brought up to date in the light of recent experimental and theoretical
work on the conceptual basis of the subject and, in response to a number of
requests from students, I have provided hints to the solution of the problems at
the ends of the chapters.

I should like to thank everyone who drew my attention to errors or
suggested improvements, I believe nearly every one of these suggestions has been
incorporated in one way or another into this new edition.

Alastair I. M. Rae
1985
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Preface to First Edition

Over the years the emphasis of undergraduate physics courses has moved away
from the study of classical macroscopic phenomena towards the discussion of the
microscopic properties of atomic and subatomic systems. As a result, students
now have to study quantum mechanics at an earlier stage in their course without
the benefit of a detailed knowledge of much of classical physics and, in particular,
with little or no acquaintance with the formal aspects of classical mechanics.
This book has been written with the needs of such students in mind. It is based
on a course of about thirty lectures given to physics students at the University
of Birmingham towards the beginning of their second year—although, perhaps
inevitably, the coverage of the book is a little greater than I was able to achieve
in the lecture course. I have tried to develop the subject in a reasonably rigorous
way, covering the topics needed for further study in atomic, nuclear, and solid
state physics, but relying only on the physical and mathematical concepts usually
taught in the first year of an undergraduate course. On the other hand, by the
end of their first undergraduate year most students have heard about the basic
ideas of atomic physics, including the experimental evidence pointing to the need
for a quantum theory, so I have confined my treatment of these topics to a brief
introductory chapter.

While discussing these aspects of quantum mechanics required for further
study, I have laid considerable emphasis on the understanding of the basic ideas
and concepts behind the subject, culminating in the last chapter which contains
an introduction to quantum measurement theory. Recent research, particularly the
theoretical and experimental work inspired by Bell’s theorem, has greatly clarified
many of the conceptual problems in this area. However, most of the existing
literature is at a research level and concentrates more on a rigorous presentation
of results to other workers in the field than on making them accessible to a
wider audience. I have found that many physics undergraduates are particularly
interested in this aspect of the subject and there is therefore a need for a treatment
suitable for this level. The last chapter of this book is an attempt to meet this need.

I should like to acknowledge the help I have received from my friends
and colleagues while writing this book. I am particularly grateful to Robert
Whitworth, who read an early draft of the complete book, and to Goronwy Jones
and George Morrison, who read parts of it. They all offered many valuable and
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xviii Preface to First Edition

penetrating criticisms, most of which have been incorporated in this final version.
I should also like to thank Ann Aylott who typed the manuscript and was always
patient and helpful throughout many changes and revisions, as well as Martin
Dove who assisted with the proofreading. Naturally, none of this help in any way
lessens my responsibility for whatever errors and omissions remain.

Alastair I. M. Rae
1980



Chapter 1

Introduction

Quantum mechanics was developed as a response to the inability of the classical
theories of mechanics and electromagnetism to provide a satisfactory explanation
of some of the properties of electromagnetic radiation and of atomic structure.
As a result, a theory has emerged whose basic principles can be used to explain
not only the structure and properties of atoms, molecules and solids, but also
those of nuclei and of ‘elementary’ particles such as the proton and neutron.
Although there are still many features of the physics of such systems that are
not fully understood, there are presently no indications that the fundamental ideas
of quantum mechanics are incorrect. In order to achieve this success, quantum
mechanics has been built on a foundation that contains a number of concepts
that are fundamentally different from those of classical physics and which have
radically altered our view of the way the natural universe operates. This book aims
to elucidate and discuss the conceptual basis of the subject as well as explaining
its success in describing the behaviour of atomic and subatomic systems.

Quantum mechanics is often thought to be a difficult subject, not only
in its conceptual foundation, but also in the complexity of its mathematics.
However, although a rather abstract formulation is required for a proper treatment
of the subject, much of the apparent complication arises in the course of
the solution of essentially simple mathematical equations applied to particular
physical situations. We shall discuss a number of such applications in this
book, because it is important to appreciate the success of quantum mechanics in
explaining the results of real physical measurements. However, the reader should
try not to allow the ensuing algebraic complication to hide the essential simplicity
of the basic ideas.

In this first chapter we shall discuss some of the key experiments that
illustrate the failure of classical physics. However, although the experiments
described were performed in the first quarter of this century and played an
important role in the development of the subject, we shall not be giving a
historically based account. Neither will our account be a complete description of
the early experimental work. For example, we shall not describe the experiments
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2 Introduction

on the properties of thermal radiation and the heat capacity of solids that provided
early indications of the need for the quantization of the energy of electromagnetic
radiation and of mechanical systems. The topics to be discussed have been chosen
as those that point most clearly towards the basic ideas needed in the further
development of the subject. As so often happens in physics, the way in which
the theory actually developed was by a process of trial and error, often relying on
flashes of inspiration, rather than the possibly more logical approach suggested
by hindsight.

1.1 The photoelectric effect

When light strikes a clean metal surface in a vacuum, it causes electrons to be
emitted with a range of energies. For light of a given frequency ν the maximum
electron energy Ex is found to be equal to the difference between two terms.
One of these is proportional to the frequency of the incident light with a constant
of proportionality h that is the same whatever the metal used, while the other is
independent of frequency but varies from metal to metal. Neither term depends on
the intensity of the incident light, which affects only the rate of electron emission.
Thus

Ex = hν − φ (1.1)

It is impossible to explain this result on the basis of the classical theory of light
as an electromagnetic wave. This is because the energy contained in such a wave
would arrive at the metal at a uniform rate and there is no apparent reason why
this energy should be divided up in such a way that the maximum electron energy
is proportional to the frequency and independent of the intensity of the light. This
point is emphasized by the dependence of the rate of electron emission on the
light intensity. Although the average emission rate is proportional to the intensity,
individual electrons are emitted at random. It follows that electrons are sometimes
emitted well before sufficient electromagnetic energy should have arrived at the
metal, and this point has been confirmed by experiments performed using very
weak light.

Such considerations led Einstein to postulate that the classical electromag-
netic theory does not provide a complete explanation of the properties of light,
and that we must also assume that the energy in an electromagnetic wave is ‘quan-
tized’ in the form of small packets, known as photons, each of which carries an
amount of energy equal to hν. Given this postulate, we can see that when light
is incident on a metal, the maximum energy an electron can gain is that carried
by one of the photons. Part of this energy is used to overcome the binding energy
of the electron to the metal—so accounting for the quantity φ in (1.1), which is
known as the work function. The rest is converted into the kinetic energy of the
freed electron, in agreement with the experimental results summarized in equa-
tion (1.1). The photon postulate also explains the emission of photoelectrons at
random times. Thus, although the average rate of photon arrival is proportional to
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the light intensity, individual photons arrive at random and, as each carries with
it a quantum of energy, there will be occasions when an electron is emitted well
before this would be classically expected.

The constant h connecting the energy of a photon with the frequency of the
electromagnetic wave is known as Planck’s constant, because it was originally
postulated by Max Planck in order to explain some of the properties of thermal
radiation. It is a fundamental constant of nature that frequently occurs in the
equations of quantum mechanics. We shall find it convenient to change this
notation slightly and define another constant } as being equal to h divided by 2π .
Moreover, when referring to waves, we shall normally use the angular frequency
ω(= 2πν), in preference to the frequency ν. Using this notation, the photon
energy E can be expressed as

E = }ω (1.2)

Throughout this book we shall write our equations in terms of } and avoid ever
again referring to h. We note that } has the dimensions of energy×time and its
currently best accepted value is 1.054 571 596× 10−34 J s.

1.2 The Compton effect

The existence of photons is also demonstrated by experiments involving the
scattering of x-rays by electrons, which were first carried out by A. H. Compton.
To understand these we must make the further postulate that a photon, as well as
carrying a quantum of energy, also has a definite momentum and can therefore be
treated in many ways just like a classical particle. An expression for the photon
momentum is suggested by the classical theory of radiation pressure: it is known
that if energy is transported by an electromagnetic wave at a rate W per unit area
per second, then the wave exerts a pressure of magnitude W/c (where c is the
velocity of light), whose direction is parallel to that of the wavevector k of the
wave; if we now treat the wave as composed of photons of energy }ω it follows
that the photon momentum p should have a magnitude }ω/c = }k and that its
direction should be parallel to k. Thus

p = }k (1.3)

We now consider a collision between such a photon and an electron of mass
m that is initially at rest. After the collision we assume that the frequency and
wavevector of the photon are changed to ω′ and k′ and that the electron moves off
with momentum pe as shown in figure 1.1. From the conservation of energy and
momentum, we have

}ω − }ω′ = p2
e/2m (1.4)

}k− }k′ = pe (1.5)
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Figure 1.1. In Compton scattering an x-ray photon of angular frequency ω and wavevector
k collides with an electron initially at rest. After the collision the photon frequency and
wavevector are changed to ω′ and k′ respectively and the electron recoils with momentum
pe.

Squaring (1.5) and substituting into (1.4) we get

}(ω − ω′) = }
2

2m
(k− k′)2 = }

2

2m
[k2 + k ′2 − 2kk ′ cos θ ]

= }
2

2m
[(k − k ′)2 + 2kk ′(1− cos θ)] (1.6)

where θ is the angle between k and k′ (cf. figure 1.1). Now the change in the
magnitude of the wavevector (k − k ′) always turns out to be very much smaller
than either k or k ′ so we can neglect the first term in square brackets on the right-
hand side of (1.6). Remembering that ω = ck and ω′ = ck ′ we then get

1

ω′
− 1

ω
= }

mc2 (1− cos θ)

that is

λ′ − λ = 2π}

mc
(1− cos θ) (1.7)

where λ and λ′ are the x-ray wavelengths before and after the collision,
respectively. It turns out that if we allow for relativistic effects when carrying
out this calculation, we obtain the same result as (1.7) without having to make
any approximations.

Experimental studies of the scattering of x-rays by electrons in solids
produce results in good general agreement with these predictions. In particular,
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if the intensity of the radiation scattered through a given angle is measured as
a function of the wavelength of the scattered x-rays, a peak is observed whose
maximum lies just at the point predicted by (1.7). In fact such a peak has a finite,
though small, width implying that some of the photons have been scattered in a
manner slightly different from that described above. This can be explained by
taking into account the fact that the electrons in a solid are not necessarily at rest,
but generally have a finite momentum before the collision. Compton scattering
can therefore be used as a tool to measure the electron momentum, and we shall
discuss this in more detail in chapter 4.

Both the photoelectric effect and the Compton effect are connected with the
interactions between electromagnetic radiation and electrons, and both provide
conclusive evidence for the photon nature of electromagnetic waves. However,
we might ask why there are two effects and why the x-ray photon is scattered
by the electron with a change of wavelength, while the optical photon transfers
all its energy to the photoelectron. The principal reason is that in the x-ray case
the photon energy is much larger than the binding energy between the electron
and the solid; the electron is therefore knocked cleanly out of the solid in the
collision and we can treat the problem by considering energy and momentum
conservation. In the photoelectric effect, on the other hand, the photon energy
is only a little larger than the binding energy and, although the details of this
process are rather complex, it turns out that the momentum is shared between
the electron and the atoms in the metal and that the whole of the photon energy
can be used to free the electron and give it kinetic energy. However, none of
these detailed considerations affects the conclusion that in both cases the incident
electromagnetic radiation exhibits properties consistent with it being composed
of photons whose energy and momentum are given by the expressions (1.2) and
(1.3).

1.3 Line spectra and atomic structure

When an electric discharge is passed through a gas, light is emitted which, when
examined spectroscopically, is typically found to consist of a series of lines, each
of which has a sharply defined frequency. A particularly simple example of such
a line spectrum is that of hydrogen, in which case the observed frequencies are
given by the formula

ωmn = 2π R0c

(
1

n2
− 1

m2

)
(1.8)

where n and m are integers, c is the speed of light and R0 is a constant known as
the Rydberg constant (after J. R. Rydberg who first showed that the experimental
results fitted this formula) whose currently accepted value is 1.097 373 157 ×
107 m−1.

Following our earlier discussion, we can assume that the light emitted from
the atom consists of photons whose energies are }ωmn . It follows from this and
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the conservation of energy that the energy of the atom emitting the photon must
have been changed by the same amount. The obvious conclusion to draw is that
the energy of the hydrogen atom is itself quantized, meaning that it can adopt only
one of the values En where

En = −2π R0}c

n2 (1.9)

the negative sign corresponding to the negative binding energy of the electron in
the atom. Similar constraints govern the values of the energies of atoms other than
hydrogen, although these cannot usually be expressed in such a simple form. We
refer to allowed energies such as En as energy levels. Further confirmation of the
existence of energy levels is obtained from the ionization energies and absorption
spectra of atoms, which both display features consistent with the energy of an
atom being quantized in this way. It will be one of the main aims of this book
to develop a theory of quantum mechanics that will successfully explain the
existence of energy levels and provide a theoretical procedure for calculating their
values.

One feature of the structure of atoms that can be at least partly explained
on the basis of energy quantization is the simple fact that atoms exist at all!
According to classical electromagnetic theory, an accelerated charge always loses
energy in the form of radiation, so a negative electron in motion about a positive
nucleus should radiate, lose energy, and quickly coalesce with the nucleus. The
fact that the radiation is quantized should not affect this argument, but if the
energy of the atom is quantized, there will be a minimum energy level (that with
n = 1 in the case of hydrogen) below which the atom cannot go, and in which
it will remain indefinitely. Quantization also explains why all atoms of the same
species behave in the same way. As we shall see later, all hydrogen atoms in the
lowest energy state have the same properties. This is in contrast to a classical
system, such as a planet orbiting a star, where an infinite number of possible
orbits with very different properties can exist for a given value of the energy of
the system.

1.4 de Broglie waves

Following on from the fact that the photons associated with electromagnetic
waves behave like particles, L. de Broglie suggested that particles such as
electrons might also have wave properties. He further proposed that the
frequencies and wavevectors of these ‘matter waves’ would be related to the
energy and momentum of the associated particle in the same way as in the photon
case. That is

E = }ω

p = }k

}
(1.10)
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In the case of matter waves, equations (1.10) are referred to as the de Broglie
relations. We shall develop this idea in subsequent chapters, where we shall find
that it leads to a complete description of the structure and properties of atoms,
including the quantized atomic energy levels. In the meantime we shall describe
an experiment that provides direct confirmation of the existence of matter waves.

The property possessed by a wave that distinguishes it from any other
physical phenomenon is its ability to form interference and diffraction patterns:
when different parts of a wave are recombined after travelling different distances,
they reinforce each other or cancel out depending on whether the two path lengths
differ by an even or an odd number of wavelengths. Such phenomena are readily
demonstrated in the laboratory by passing light through a diffraction grating
for example. However, if the wavelength of the waves associated with even
very low energy electrons (say around 1 eV) is calculated using the de Broglie
relations (1.10) a value of around 10−9 m is obtained, which is much smaller
than that of visible light and much too small to form a detectable diffraction
pattern when passed through a conventional grating. However, the atoms in a
crystal are arranged in periodic arrays, so a crystal can act as a three-dimensional
diffraction grating with a very small spacing. This is demonstrated in x-ray
diffraction, and the first direct confirmation of de Broglie’s hypothesis was an
experiment performed by C. Davisson and L. H. Germer that showed electrons
being diffracted by crystals in a similar manner.

Nowadays the wave properties of electron beams are commonly observed
experimentally and electron microscopes, for example, are often used to display
the diffraction patterns of the objects under observation. Moreover, not only
electrons behave in this way; neutrons of the appropriate energy can also
be diffracted by crystals, this technique being commonly used to investigate
structural and other properties of solids. In recent years, neutron beams have
been produced with such low energy that their de Broglie wavelength is as large
as 2.0 nm. When these are passed through a double slit whose separation is of
the order of 0.1 mm, the resulting diffraction maxima are separated by about
10−3 degrees, which corresponds to about 0.1 mm at a distance of 5 m beyond the
slits, where the detailed diffraction pattern can be resolved. Figure 1.2 gives the
details of such an experiment and the results obtained; we see that the number of
neutrons recorded at different angles is in excellent agreement with the intensity
of the diffraction pattern, calculated on the assumption that the neutron beam can
be represented by a de Broglie wave.

1.5 Wave–particle duality

Although we have just described the experimental evidence for the wave nature
of electrons and similar bodies, it must not be thought that this description
is complete or that these are any-the-less particles. Although in a diffraction
experiment wave properties are manifested during the diffraction process and the
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intensity of the wave determines the average number of particles scattered through
various angles, when the diffracted electrons are detected they are always found
to behave like point particles with the expected mass and charge and having a
particular energy and momentum. Conversely, although we need to postulate
photons in order to explain the photoelectric and Compton effects, phenomena
such as the diffraction of light by a grating or of x-rays by a crystal can be
explained only if electromagnetic radiation has wave properties.

Quantum mechanics predicts that both the wave and the particle models
apply to all objects whatever their size. However, in many circumstances it is
perfectly clear which model should be used in a particular physical situation.
Thus, electrons with a kinetic energy of about 100 eV (1.6 × 10−17 J) have a
de Broglie wavelength of about 10−10 m and are therefore diffracted by crystals
according to the wave model. However, if their energy is very much higher (say
100 MeV) the wavelength is then so short (about 10−14 m) that diffraction effects
are not normally observed and such electrons nearly always behave like classical
particles. A small grain of sand of mass about 10−6 g moving at a speed of
10−3 m s−1 has a de Broglie wavelength of the order of 10−21 m and its wave
properties are quite undetectable; clearly this is even more true for heavier or
faster moving objects. There is considerable interest in attempting to detect wave
properties of more and more massive objects. To date, the heaviest body for which
diffraction of de Broglie waves has been directly observed is the Buckminster
fullerene molecule C60 whose mass is nearly 1000 times that of a neutron. These
particles were passed through a grating and the resulting diffraction pattern was
observed in an experiment performed in 2000 by the same group as is featured in
figure 1.2.

Some experiments cannot be understood unless the wave and particle are
both used. If we examine the neutron diffraction experiment illustrated in
figure 1.2, we see how it illustrates this. The neutron beam behaves like a wave
when it is passing through the slits and forming an interference pattern, but when
the neutrons are detected, they behave like a set of individual particles with the
usual mass, zero electric charge etc. We never detect half a neutron! Moreover,
the typical neutron beams used in such experiments are so weak that no more than
one neutron is in the apparatus at any one time and we therefore cannot explain
the interference pattern on the basis of any model involving interactions between
different neutrons.

Suppose we now change this experiment by placing detectors behind each
slit instead of a large distance away; these will detect individual neutrons passing
through one or other of the slits—but never both at once—and the obvious
conclusion is that the same thing happened in the interference experiment. But we
have just seen that the interference pattern is formed by a wave passing through
both slits, and this can be confirmed by arranging a system of shutters so that only
one or other of the two slits, but never both, are open at any one time, in which
case it is impossible to form an interference pattern. Both slits are necessary to
form the interference pattern, so if the neutrons always pass through one slit or
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Figure 1.2. In recent years, it has been possible to produce neutron beams with de Broglie
wavelengths around 2 nm which can be detectably diffracted by double slits of separation
about 0.1 mm. A typical experimental arrangement is shown in (a) and the slit arrangement
is illustrated in (b). The number of neutrons recorded along a line perpendicular to the
diffracted beam 5 m beyond the slits is shown in (c), along with the intensity calculated
from diffraction theory, assuming a wave model for the neutron beam. The agreement is
clearly excellent. (Reproduced by permission from A. Zeilinger, R. Gähler, C. G. Schull,
W. Treimer and W. Mampe, Reviews of Modern Physics 60 1067–73 (1988).)
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the other then the behaviour of a given neutron must somehow be affected by the
slit it did not pass through!

An alternative view, which is now the orthodox interpretation of quantum
mechanics, is to say that the model we use to describe quantum phenomena is not
just a property of the quantum objects (the neutrons in this case) but also depends
on the arrangement of the whole apparatus. Thus, if we perform a diffraction
experiment, the neutrons are waves when they pass through the slits, but are
particles when they are detected. But if the experimental apparatus includes
detectors right behind the slits, the neutrons behave like particles at this point.
This dual description is possible because no interference pattern is created in
the latter case. Moreover, it turns out that this happens no matter how subtle
an experiment we design to detect which slit the neutron passes through: if it
is successful, the phase relation between the waves passing through the slits is
destroyed and the interference pattern disappears. We can therefore look on the
particle and wave models as complementary rather than contradictory properties.
Which one is manifest in a particular experimental situation depends on the
arrangement of the whole apparatus, including the slits and the detectors; we
should not assume that, just because we detect particles when we place detectors
behind the slits, the neutrons still have these properties when we do not.

It should be noted that, although we have just discussed neutron diffraction,
the argument would have been largely unchanged if we had considered light
waves and photons or any other particles with their associated waves. In fact
the idea of complementarity is even more general than this and we shall find
many cases in our discussion of quantum mechanics where the measurement of
one property of a physical system renders another unobservable; an example
of this will be described in the next paragraph when we discuss the limitations
on the simultaneous measurement of the position and momentum of a particle.
Many of the apparent paradoxes and contradictions that arise can be resolved by
concentrating on those aspects of a physical system that can be directly observed
and refraining from drawing conclusions about properties that cannot. However,
there are still significant conceptual problems in this area which remain the subject
of active research, and we shall discuss these in some detail in chapter 13.

The uncertainty principle

In this section we consider the limits that wave–particle duality places on the
simultaneous measurement of the position and momentum of a particle. Suppose
we try to measure the position of a particle by illuminating it with radiation
of wavelength λ and using a microscope of angular aperture α, as shown in
figure 1.3. The fact that the radiation has wave properties means that the size of
the image observed in the microscope will be governed by the resolving power of
the microscope. The position of the electron is therefore uncertain by an amount
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Figure 1.3. A measurement of the position of a particle by a microscope causes a
corresponding uncertainty in the particle momentum as it recoils after interaction with
the illuminating radiation.

�x which is given by standard optical theory as

�x � λ

sin α
(1.11)

However, the fact that the radiation is composed of photons means that each
time the particle is struck by a photon it recoils, as in Compton scattering. The
momentum of the recoil could of course be calculated if we knew the initial and
final momenta of the photon, but as we do not know through which points on
the lens the photons entered the microscope, the x component of the particle
momentum is subject to an error �px where

�px � p sinα

= 2π} sinα/λ (1.12)

Combining (1.11) and (1.12) we get

�x�px � 2π} (1.13)

It follows that if we try to improve the accuracy of the position measurement
by using radiation with a smaller wavelength, we shall increase the error on
the momentum measurement and vice versa. This is just one example of an
experiment designed to measure the position and momentum of a particle, but
it turns out that any other experiment with this aim is subject to constraints
similar to (1.13). We shall see in chapter 4 that the fundamental principles of
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quantum mechanics ensure that in every case the uncertainties in the position and
momentum components are related by

�x�px >
1
2} (1.14)

This relation is known as the Heisenberg uncertainty principle. According to
quantum mechanics it is a fundamental property of nature that any attempt to
make simultaneous measurements of position and momentum are subject to this
limitation. It should be noted that these results are independent of the mass of the
electron and therefore are not a result of the electron recoil. They would apply
equally well to a particle of large mass, which would not move significantly as a
result of photon scattering, although its momentum (mv where v is the velocity)
uncertainty would still be given by (1.12). The Heisenberg uncertainty principle
is more subtle than the popular idea of the value of one property being disturbed
when the other is measured. We return to this point in our more general discussion
of the uncertainty principle in chapter 4.

1.6 The rest of this book

In the next two chapters we discuss the nature and properties of matter waves in
more detail and show how to obtain a wave equation whose solutions determine
the energy levels of bound systems. We shall do this by considering one-
dimensional waves in chapter 2, where we shall obtain qualitative agreement
with experiment; in the following chapter we shall extend our treatment to three-
dimensional systems and obtain excellent quantitative agreement between the
theoretical results and experimental values of the energy levels of the hydrogen
atom. At the same time we shall find that this treatment is incomplete and leaves
many important questions unanswered. Accordingly, in chapter 4 we shall set
up a more formal version of quantum mechanics within which the earlier results
are included but which can, in principle, be applied to any physical system. This
will prove to be a rather abstract process and prior familiarity with the results
discussed in the earlier chapters will be a great advantage in understanding it.
Having set up the general theory, it is then developed in subsequent chapters
and discussed along with its applications to a number of problems such as the
quantum theory of angular momentum and the special properties of systems
containing a number of identical particles. Chapter 11 consists of an elementary
introduction to relativistic quantum mechanics and quantum field theory, while
chapter 12 discusses some examples of the applications of quantum mechanics
to the processing of information that were developed towards the end of the
twentieth century. The last chapter contains a detailed discussion of some of
the conceptual problems of quantum mechanics. Chapters 7 to 13 are largely
self-contained and can be read in a different order if desired.

Finally we should point out that photons, which have been referred to
quite extensively in this chapter, will hardly be mentioned again except in
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passing. This is primarily because a detailed treatment requires a discussion of
the quantization of the electromagnetic field. We give a very brief introduction
to quantum field theory in chapter 11, but anything more would require a
degree of mathematical sophistication which is unsuitable for a book at this
level. We shall instead concentrate on the many physical phenomena that can be
understood by considering the mechanical system to be quantized and treating the
electromagnetic fields semi-classically. However, it should be remembered that
there are a number of important phenomena, particularly in high-energy physics,
which clearly establish the quantum properties of electromagnetic waves, and
field quantization is an essential tool in considering such topics.

Problems

1.1 The maximum energy of photoelectrons emitted from potassium is 2.1 eV when illuminated by
light of wavelength 3 × 10−7 m and 0.5 eV when the light wavelength is 5 × 10−7 m. Use these
results to obtain values for Planck’s constant and the minimum energy needed to free an electron from
potassium.

1.2 If the energy flux associated with a light beam of wavelength 3× 10−7 m is 10 W m−2, estimate
how long it would take, classically, for sufficient energy to arrive at a potassium atom of radius
2 × 10−10 m in order that an electron be ejected. What would be the average emission rate of
photoelectrons if such light fell on a piece of potassium 10−3 m2 in area? Would you expect your
answer to the latter question to be significantly affected by quantum-mechanical considerations?

1.3 An x-ray photon of wavelength 1.0 × 10−12 m is incident on a stationary electron. Calculate the
wavelength of the scattered photon if it is detected at an angle of (i) 60◦, (ii) 90◦ and (iii) 120◦ to the
incident radiation.

1.4 A beam of neutrons with known momentum is diffracted by a single slit in a geometrical
arrangement similar to that shown for the double slit in figure 1.2. Show that an approximate value
of the component of momentum of the neutrons in a direction perpendicular to both the slit and the
incident beam can be derived from the single-slit diffraction pattern. Show that the uncertainty in
this momentum is related to the uncertainty in the position of the neutron passing through the slit in
a manner consistent with the Heisenberg uncertainty principle. (This example is discussed in more
detail in chapter 4.)



Chapter 2

The one-dimensional Schrödinger equations

In the previous chapter we have seen that electrons and other subatomic particles
sometimes exhibit properties similar to those commonly associated with waves:
for example, electrons of the appropriate energy are diffracted by crystals in a
manner similar to that originally observed in the case of x-rays. We have also seen
that the energy and momentum of a free particle can be expressed in terms of the
angular frequency and wavevector of the associated plane wave by the de Broglie
relations (1.10).

We are going to develop these ideas to see how the wave properties of the
electrons bound within atoms can account for atomic properties such as line
spectra. Clearly atoms are three-dimensional objects, so we shall eventually have
to consider three-dimensional waves. However, this involves somewhat complex
analysis, so in this chapter we shall begin by studying the properties of electron
waves in one dimension.

In one dimension the wavevector and momentum of a particle can be treated
as scalars so the de Broglie relations can be written as

E = }ω p = }k (2.1)

We shall use these and the properties of classical waves to set up a wave equation,
known as the Schrödinger wave equation, appropriate to these ‘matter waves’.
When we solve this equation for the case of particles that are not free but move
in a potential well, we shall find that solutions are only possible for particular
discrete values of the total energy. We shall apply this theory to a number of
examples and compare the resulting energy levels with experimental results.

2.1 The time-dependent Schrödinger equation

Consider a classical plane wave (such as a sound or light wave) moving along the
x axis. Its displacement at the point x at time t is given by the real part of the
complex quantity A where

A(x, t) = A0 exp[i(kx − ωt)] (2.2)

14
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(In the case of electromagnetic waves, for example, the real part of A is the
magnitude of the electric field vector.) This expression is the solution to a wave
equation and the form of wave equation applicable to many classical waves is

∂2 A

∂x2
= 1

c2

∂2 A

∂ t2
(2.3)

where c is a real constant equal to the wave velocity. If we substitute the right-
hand side of (2.2) into (2.3), we see that the former is a solution to the latter if

−k2 = −ω2/c2

that is
ω = c|k| (2.4)

We can see immediately that the equation governing matter waves cannot
have the form (2.3), because (2.4) combined with the de Broglie relations (2.1)
gives the linear relation

E = cp (2.5)

whereas for non-relativistic free particles the energy and momentum are known
to obey the classical relation

E = p2/2m (2.6)

In the case of matter waves, therefore, we must look for a wave equation of
a different kind from (2.3). However, because we know that plane waves are
associated with free particles, expression (2.2) must also be a solution to this new
equation.

If the equations (2.1) and (2.6) are to be satisfied simultaneously, it is
necessary that the frequency of the wave be proportional to the square of the
wavevector, rather than to its magnitude as in (2.4). This indicates that a suitable
wave equation might involve differentiating twice with respect to x , as in (2.3),
but only once with respect to t . Consider, therefore, the equation

∂2�

∂x2
= α

∂�

∂ t
(2.7)

where α is a constant and �(x, t) is a quantity known as the wavefunction whose
significance will be discussed shortly. If we now substitute a plane wave of the
form (2.2) for � we find that this is a solution to (2.7) if

−k2 = −iαω

We are therefore able to satisfy (2.1) and (2.6) by defining α such that

α = −2mi/}
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Substituting this into (2.7) and rearranging slightly we obtain the wave equation
for the matter waves associated with free particles as

i}
∂�

∂ t
= − }

2

2m

∂2�

∂x2 (2.8)

We can verify that this equation meets all the previous requirements by putting �

equal to a plane wave of the form (2.2) and using the de Broglie relations (2.1) to
get

E� = (p2/2m)� (2.9)

as expected.
However, so far we have only found an equation which produces the correct

results for a free particle, whereas we are looking for a more general theory to
include the case of a particle moving under the influence of a potential, V (x, t).
The total energy E in this case is equal to the sum of the kinetic and potential
energies which suggests a possible generalization of (2.9) to

E� = (p2/2m + V )�

which in turn suggests that the wave equation (2.9) could be similarly generalized
to give

i}
∂�

∂ t
= − }

2

2m

∂2�

∂x2 + V� (2.10)

Equation (2.10) was first obtained by Erwin Schrödinger in 1926 and is
known as the one-dimensional time-dependent Schrödinger equation; its further
generalization to three-dimensional systems is quite straightforward and will be
discussed in the following chapter. We shall shortly obtain solutions to this
equation for various forms of the potential V (x, t), but in the meantime we shall
pause to consider the validity of the arguments used to obtain (2.10).

It is important to note that these arguments in no way constitute a rigorous
derivation of a result from more basic premises: we started with a limited amount
of experimental knowledge concerning the properties of free particles and their
associated plane waves, and we ended up with an equation for the wavefunction
associated with a particle moving under the influence of a general potential! Such
a process whereby we proceed from a particular example to a more general law
is known as induction, in contrast with deduction whereby a particular result is
derived from a more general premise.

Induction is very important in science, and is an essential part of the process
of the development of new theories, but it cannot by itself establish the truth of the
general laws so obtained. These remain inspired guesses until physical properties
have been deduced from them and found to be in agreement with the results of
experimental measurement. Of course, if only one case of disagreement were to
be found, the theory would be falsified and we should need to look for a more
general law whose predictions would then have to agree with experiment in this
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new area, as well as in the other cases where the earlier theory was successful. The
Schrödinger equation, and the more general formulation of quantum mechanics
to be discussed in chapter 4, have been set up as a result of the failure of classical
physics to predict correctly the results of experiments on microscopic systems;
they must be verified by testing their predictions of the properties of systems
where classical mechanics has failed and also where it has succeeded. Much of
the rest of this book will consist of a discussion of such predictions and we shall
find that the theory is successful in every case; in fact the whole of atomic physics,
solid state physics and chemistry obey the principles of quantum mechanics. The
same is true of nuclear and particle physics, although an understanding of very
high-energy phenomena requires an extension of the theory to include relativistic
effects and field quantization, which are briefly discussed in chapter 11.

The wavefunction

We now discuss the significance of the wavefunction, �(x, t), which was
introduced in equation (2.7). We first note that, unlike the classical wave
displacement, the wavefunction is essentially a complex quantity. In the classical
case the complex form of the classical wave is used for convenience, the physical
significance being confined to its real part which is itself a solution to the
classical wave equation. In contrast, neither the real nor the imaginary part
of the wavefunction, but only the full complex expression, is a solution to the
Schrödinger equation. It follows that the wavefunction cannot itself be identified
with a single physical property of the system. However, it has an indirect
significance which we shall now discuss—again using an inductive argument.

When we discussed diffraction in chapter 1, we saw that, although the
behaviour of the individual particles is random and unpredictable, after a large
number have passed through the apparatus a pattern is formed on the screen
whose intensity distribution is proportional to the intensity of the associated
wave. That is, the number of particles arriving at a particular point per unit
time is proportional to the square of the amplitude of the wave at that point. It
follows that if we apply these ideas to matter waves and consider one particle, the
probability that it will be found in a particular place may well be proportional to
the square of the modulus of the wavefunction there. Thus, if P(x, t)dx is the
probability that the particle is at a point between x and x + dx at a time t , then
P(x, t) should be proportional to |�(x, t)|2. This means that, if we know the
wavefunction associated with a physical system, we can calculate the probability
of finding a particle in the vicinity of a particular point. This interpretation of
the wavefunction was first suggested by Max Born and is known as the Born
postulate. It is a fundamental principle of quantum mechanics that this probability
distribution represents all that can be predicted about the particle position: in
contrast to classical mechanics which assumes that the position of a particle is
always known (or at least knowable) quantum mechanics states that it is almost
always uncertain and indeterminate. We shall discuss this indeterminacy in more
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detail in chapter 4, where we shall extend this argument to obtain expressions
for the probability distributions governing the measurement of other physical
properties, such as the particle momentum, and see how these ideas relate to the
uncertainty principle. It is this ‘probabilistic’ aspect of quantum mechanics which
has given rise to many of the conceptual difficulties associated with the subject,
and we shall discuss some of these in chapter 13.

We can now impose an important constraint on the wavefunction: at any time
we must certainly be able to find the particle somewhere, so the total probability
of finding it with an x coordinate between plus and minus infinity must be unity.
That is, ∫ ∞

−∞
P(x, t) dx = 1 (2.11)

Now, referring back to (2.10), we see that if � is a solution to the Schrödinger
equation then C� is also a solution where C is any constant (a differential
equation with these properties is said to be linear). The scale of the wavefunction
can therefore always be chosen to ensure that the condition (2.11) holds and at the
same time

P(x, t) = |�(x, t)|2 (2.12)

This process is known as normalization, and a wavefunction which obeys these
conditions is said to be normalized. The phase of C , however, is not determined
by the normalizing process, and it turns out that a wavefunction can always be
multiplied by a phase factor of the form exp(iα), where α is an arbitrary, real
constant, without affecting the values of any physically significant quantities.

2.2 The time-independent Schrödinger equation

We now consider the case where the potential, V , is not a function of time and
where, according to classical mechanics, energy is conserved. Much of this
book will relate to the quantum mechanics of such ‘closed systems’ and we shall
discuss the more general problem of time dependence in detail only in chapter 8.
If V is time independent we can apply the standard ‘separation of variables’
technique to the Schrödinger equation, putting

�(x, t) = u(x)T (t) (2.13)

Substituting (2.13) into (2.10) and dividing both sides by � , we get

i}
1

T

dT

dt
= −1

u

}
2

2m

d2u

dx2 + V (x) (2.14)

Now the left-hand side of this equation is independent of x while the right-hand
side is independent of t , but the equation must be valid for all values of x and t .
This can be true only if both sides are equal to a constant which we call E . Thus

i}
dT

dt
= ET (2.15)
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and

− }
2

2m

d2u

dx2
+ V (x)u = Eu (2.16)

Equation (2.15) can be solved immediately leading to

T = exp(−i Et/}) (2.17)

while the solutions to (2.16) depend on the particular form of V (x).
Equation (2.16) is known as the one-dimensional time-independent Schrödinger
equation. In the special case of a free particle, the origin of potential energy can
be chosen so that V (x) = 0 and a solution to (2.16) is then

u = A exp(ikx)

where k = (2m E/}2)1/2 and A is a constant. Thus the wavefunction has the form

ψ = A exp[i(kx − ωt)] (2.18)

where ω = E/}. This is just the same plane-wave form which we had originally
in the case of a free particle (2.2)—provided that the constant E is interpreted as
the total energy of the system, so our theory is self-consistent at least.1

In the case of any closed system, therefore, we can obtain solutions to
the time-dependent Schrödinger equation corresponding to a given value of the
energy of the system by solving the appropriate time-independent equation and
multiplying the solution by the time-dependent phase factor (2.17). Provided the
energy of the system is known and remains constant (and it is only this case which
we shall be considering for the moment) the phase factor, T , has no physical
significance. In particular, we note that the probability distribution, |�|2, is now
identical to |u|2, so that the normalization condition (2.11) becomes∫ ∞

−∞
|u|2 dx = 1 (2.19)

We shall shortly proceed to obtain solutions to the time-independent
Schrödinger equation for a number of forms of the potential, V (x), but before
doing so we must establish some boundary conditions that have to be satisfied if
the solutions to the Schrödinger equation are to represent physically acceptable
wavefunctions.

2.3 Boundary conditions

Besides fulfilling the normalization condition, a solution to the time-independent
Schrödinger equation must obey the following boundary conditions:
1 There are particular difficulties associated with the normalization of a wavefunction which has a
form such as (2.18) and these are discussed in detail in chapter 9.
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1. The wavefunction must be a continuous, single-valued function of position
and time.

This boundary condition ensures that the probability of finding a
particle in the vicinity of any point is unambiguously defined, rather than
having two or more possible values—as would be the case if the probability
distribution |�|2 were a many-valued function of x (such as sin−1 x , for
example) or had discontinuities. Although, strictly speaking, this argument
only requires |�|2 to be single valued, imposing the condition on the
wavefunction itself ensures the successful calculation of other physical
quantities;2 an example of this occurs in the discussion of spherically
symmetric systems in chapter 3.

2. The integral of the squared modulus of the wavefunction over all values of x
must be finite.

In the absence of this boundary condition, the wavefunction clearly
could not be normalized and the probabilistic interpretation would not be
possible. We use this condition to reject as physically unrealistic, solutions to
the Schrödinger equation that are zero everywhere or which diverge strongly
to infinity at any point. A modification of this boundary condition and the
procedure for normalizing the wavefunction is necessary in the case of free
particles, and this is discussed in chapter 9.

3. The first derivative of the wavefunction with respect to x must be continuous
everywhere except where there is an infinite discontinuity in the potential.

This boundary condition follows from the fact that a finite discontinuity
in ∂�/∂x implies an infinite discontinuity in ∂2�/∂x2 and therefore, from
the Schrödinger equation, in V (x).

Having set up these boundary conditions we are now ready to consider the
solutions to the Schrödinger equation in some particular cases.

2.4 Examples

(i) The Infinite Square Well As a first example we consider the problem of a
particle in the potential V (x) that is illustrated in figure 2.1 and is given by

V = 0 − a 6 x 6 a (2.20)

V = ∞ |x | > a (2.21)

This is known as an infinite square well.
In the first region, the time-independent Schrödinger equation (2.16)

becomes
}

2

2m

d2u

dx2
+ Eu = 0 (2.22)

2 A detailed discussion of this point has been given by E. Merzbacher, Am. J. Phys., vol. 30, p. 237,
1962.
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Figure 2.1. (a) shows the potential V as a function of x for an infinite square well, along
with the energy levels of the four lowest energy states. The wavefunctions and position
probability distributions corresponding to energy states with n = 1, 2, 3, and 8 are shown
in (b) and (c) respectively.

The general solution to this equation is well known and can be verified by
substitution. It can be written in the form

u = A cos kx + B sin kx (2.23)

where A and B are constants and k = (2m E/}2)1/2.

In the region outside the well where the potential is infinite, the Schrödinger
equation can be satisfied only if the wavefunction is zero. We now apply the first
boundary condition which requires the wavefunction to be continuous at x = ±a
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and therefore equal to zero at these points. Thus

and
A cos ka + B sin ka = 0

A cos ka − B sin ka = 0

}
(2.24)

Hence, either

or

B = 0 and cos ka = 0

that is, k = nπ/2a n = 1, 3, 5, . . .

A = 0 and sin ka = 0

that is, k = nπ/2a n = 2, 4, 6, . . .




(2.25)

These conditions, combined with the definition of k following (2.23), mean that
solutions consistent with the boundary conditions exist only if

E ≡ En = }
2π2n2/8ma2 (2.26)

In other words, the energy is quantized. Application of the normalization
condition (2.19) leads to the following expressions for the time-independent part
of the wavefunction, which we now write as un:

un = a−1/2 cos(nπx/2a) for n odd

un = a−1/2 sin(nπx/2a) for n even

}
if − a 6 x 6 a

un = 0 if |x | > a

(2.27)

and

These expressions are illustrated graphically in figure 2.1(b) for a number of
values of n. We see that the wavefunction is either symmetric (un(x) = un(−x))
or antisymmetric (un(x) = −un(−x)) about the origin, depending on whether
n is even or odd. This property is known as the parity of the wavefunction:
symmetric wavefunctions are said to have even parity while antisymmetric
wavefunctions are said to have odd parity. The possession of a particular parity is
a general feature of the wavefunction associated with an energy state of a potential
which is itself symmetric (i.e. when V (x) = V (−x)).

Remembering that the probability distribution for the particle position is
given by |u(x)|2, we see from figure 2.1 that, in the lowest energy state, the
particle is most likely to be found near the centre of the box, while in the
first excited state its most likely positions are near x = ±a/2. For states of
comparatively high energy, the probability distribution has the form of a large
number of closely spaced oscillations of equal amplitude.

We can use these results to get some idea of how the Schrödinger equation
can be used to explain atomic properties. The typical size of an atom is around
10−10 m and the mass of an electron is 9.1× 10−31 kg. Taking the first of these
to be a and substituting into (2.26) leads to the expression

En � 1.5× 10−18n2 J
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The energy difference between the first and second levels is then 4.5 × 10−18 J
(28 eV) so that a photon emitted in a transition between these levels would
have a wavelength of about 4.4 × 10−8 m, which is of the same order as that
observed in atomic transitions. If we perform a similar calculation with m the
mass of a proton (1.7 × 10−27 kg) and a the order of the diameter of a typical
nucleus (2 × 10−15 m) the energy difference between the first and second levels
is now 5 × 10−12 J (34 MeV) which is in order-of-magnitude agreement with
experimental measurements of nuclear binding energies. Of course, neither
the atom nor the nucleus is a one-dimensional box, so we can only expect
approximate agreement at this stage; quantitative calculations of atomic and
nuclear energy levels must wait until we develop a full three-dimensional model
in the next chapter.

One of the important requirements of a theory of microscopic systems is
that it must produce the same results for macroscopic systems as are successfully
predicted by classical mechanics. This is known as the correspondence principle.
Applied to the present example, in the classical limit we expect no measurable
quantization of the energy and a uniform probability distribution—because the
particle is equally likely to be anywhere in the box. We consider a particle of
mass 10−10 kg (e.g. a small grain of salt) confined to a box of half-width 10−6 m.
These quantities are small on a macroscopic scale although large in atomic terms.
The quantum states of this system then have energies

En = 1.4× 10−46n2 J

The minimum energy such a system could possess would be that corresponding
to the thermal energy associated with a single degree of freedom. Even at a
temperature as low as 1 K this is of the order of 10−23 J leading to a value for
n of around 3× 1011. The separation between adjacent energy levels would then
be 8 × 10−35 J and an experiment of the accuracy required to detect any effects
due to energy quantization would be completely impossible in practice. At this
value of n the separation between adjacent peaks in the probability distribution
would be 3 × 10−18 m and an experiment to define the position of the particle
to this accuracy or better would be similarly impossible.3 Thus to all intents and
purposes, quantum and classical mechanics predict the same results—all positions
within the well are equally likely and any value of the energy is allowed—and the
correspondence principle is verified in this case.

(ii) The Finite Square Well We now consider the problem where the sides of
the well are not infinite, but consist of finite steps. The potential, illustrated in

3 If the energy of the system is not precisely defined then the exact value of n will be unknown. It
will be shown later (chapter 4) that this implies that the wavefunction is then a linear combination
of the wavefunctions of the states within the allowed energy span. The corresponding probability
distribution is then very nearly uniform across the well—in even better agreement with the classical
expectation.
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Figure 2.2. (a) shows the potential V as a function of x for a finite square well in the
case where V0 = 25}2/2ma2, along with the energies of the four bound states. The
wavefunctions and position probability distributions for these states are shown in (b) and
(c) respectively.

figure 2.2, is then given by

V = 0 − a 6 x 6 a

V = V0 |x | > a

}
(2.28)

We shall consider only bound states where the total energy E is less than V0. The
general solution to the Schrödinger equation in the first region is identical to the
corresponding result in the infinite case (2.23). In the region |x | > a, however,
the Schrödinger equation becomes

}
2

2m

d2u

dx2 − (V0 − E)u = 0 (2.29)

whose general solution is

u = C exp(κx)+ D exp(−κx) (2.30)
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where C and D are constants and κ = [2m(V0 − E)/}2]1/2. We see at once that
C must equal zero otherwise the wavefunction would tend to infinity as x tends
to infinity in breach of the boundary conditions. Thus we have

u = D exp(−κx) x > a (2.31)

A similar argument leads to

u = C exp(κx) x < −a (2.32)

As the discontinuities in the potential at x = ±a are now finite rather than
infinite, the boundary conditions require that both u and du/dx be continuous at
these points. Thus we have, from (2.23), (2.31) and (2.32),

A cos ka + B sin ka = D exp(−κa) (2.33)

−k A sin ka + k B cos ka = −κD exp(−κa) (2.34)

A cos ka − B sin ka = C exp(−κa) (2.35)

k A sin ka + k B cos ka = κC exp(−κa) (2.36)

These equations lead directly to

2A cos ka = (C + D) exp(−κa) (2.37)

2k A sin ka = κ(C + D) exp(−κa) (2.38)

2B sin ka = (D − C) exp(−κa) (2.39)

2k B cos ka = −κ(D − C) exp(−κa) (2.40)

where (2.37) is obtained by adding (2.33) and (2.35), (2.38) is obtained by
subtracting (2.34) from (2.36), and (2.39) and (2.40) are derived similarly. If
we now divide (2.38) by (2.37) and (2.40) by (2.39) we get

and
k tan ka = κ unless C = −D and A = 0

k cot ka = −κ unless C = D and B = 0

}
(2.41)

The two conditions (2.41) must be satisfied simultaneously, so we have two sets
of solutions subject to the following conditions:

either

or

k tan ka = κ C = D and B = 0

k cot ka = −κ C = −D and A = 0

}
(2.42)

These, along with the definitions of k and κ , determine the energy levels and
associated wavefunctions of the system.

Remembering that k = (2m E)1/2/} and κ = [2m(V0 − E)]1/2/}, we see
that equations (2.42) determine the allowed values of the energy, just as the energy
levels of the infinite well were determined by equations (2.25). However, in
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the present case the solutions to the equations cannot be expressed as algebraic
functions and we have to solve them numerically. One way of doing this is to use
the definitions of k and κ to rewrite equations (2.42) as

and
k2a2 tan2(ka) = (k2

0 − k2)a2

k2a2 cot2(ka) = (k2
0 − k2)a2

}
(2.43)

where k2
0 = 2mV0/}

2. Equation (2.43) can be rewritten using standard
trigonometric identities as

and
ka = n1π + cos−1(ka/k0a)

ka = n2π − sin−1(ka/k0a)

}
(2.44)

where n1 and n2 are integers and the terms n1π and n2π are included because
of the multivalued property of the inverse cosine and sine functions. In general,
solutions will exist for several values of n1 and n2 corresponding to the different
energy levels. However, it is clear that solutions do not exist if n1π or n2π is
appreciably greater than k0a because the arguments of the inverse cosine or sine
would then have to be greater than one. This corresponds to the fact that there are
a limited number of bound states with energies less than V0.

Values for ka and hence E can be obtained by straightforward iteration.
First, we evaluate k0a from the values of V0 and a for the particular problem.
If we now guess a value for ka, we can substitute this into the right-hand side of
one of (2.44) and obtain a new value of ka. This process usually converges to the
correct value of ka. However, if the required value of ka is close to k0a, iteration
using (2.44) can fail to converge. Such cases can be successfully resolved by
applying a similar iterative process to the equivalent equations

and
ka = k0a cos(ka − n1π)

ka = k0a sin(n2π − ka)

}
(2.45)

The reader should try this for the case where V0 = 25}2/2ma2 so that k0a
equals 5.0. The ground state energy can be obtained from the first of (2.44) with
n1 = 0; starting with an initial value of ka anywhere between 1.0 and 2.0, ka
should converge to 1.306 after a few iterations. If the exercise is repeated with
n1 = 1, another solution with ka = 3.838 should be obtained. However, if
we try n1 = 2, we are unable to obtain a solution, because the energy would
now be greater than V0. The remaining levels can be found by a very similar
procedure using the second of equations (2.44) and (2.45). Table 2.1 sets out the
details of all the possible solutions in this case, showing the energy levels both as
fractions of V0 and as fractions of the energies of the corresponding infinite-well
states (2.26). The associated wavefunctions are shown in figure 2.2. Comparing
these with the wavefunctions for the infinite square well (figure 2.1), we see that
they are generally similar and, in particular, that they have a definite parity, being
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Table 2.1. Values of the quantities ka, κa and E that are consistent with the boundary
conditions for a potential well whose sides are of height V0 when V0 = 25}2/2ma2. The
energies of the corresponding states in the case where V0 is infinite are represented by E∞.

ka κa E/V0 E/E∞
1.306 4.826 0.069 0.691
2.596 4.273 0.270 0.682
3.838 3.205 0.590 0.663
4.907 0.960 0.964 0.610

either symmetric or antisymmetric about the point x = 0. However, one important
difference between figures 2.2 and 2.1 is that in the former case the wavefunctions
decay exponentially in the region |x | > a instead of going to zero at x = ±a.
That is, the wavefunction penetrates a region where the total energy is less than
V0, implying that there is a probability of finding the particle in a place where it
could not be classically as it would then have to have negative kinetic energy. This
is another example of a quantum-mechanical result that is quite different from the
classical expectation and we shall discuss it in more detail in the next section.

The penetration of the wavefunction into the classically forbidden region
also results in the energy levels being lower than in the infinite square-well
case (table 2.1) because the boundary conditions are now satisfied for smaller
values of k. This effect is more noticeable for the higher energy levels and,
conversely, we can conclude that in the case of a very deep well, the energy
levels and wavefunctions of the low-lying states would be indistinguishable from
those where V0 was infinite. This point also follows directly from the boundary
conditions: when (V0 − E) and therefore κ are very large, the conditions (2.42)
become identical to (2.25).

2.5 Quantum mechanical tunnelling

We now turn to a more detailed discussion of effects associated with the
penetration of the wavefunction into the classically forbidden region. Consider
first a potential well bounded by barriers of finite height and width as in
figure 2.3(a). As we have seen in the finite square well case, the wavefunction
decays exponentially in the classically forbidden region and is still non-zero
at the points |x | = b. In the regions where |x | > b, however, the total
energy is again greater than the potential energy and the wavefunction is again
oscillatory. It follows that there is a probability of finding the particle both inside
and outside the potential well and also at all points within the barrier. Quantum
mechanics therefore implies that a particle is able to pass through a potential
energy barrier which, according to classical mechanics, should be impenetrable.
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Figure 2.3. Particles in states with energy between 0 and V0 can escape from the potential
well illustrated in (a) by quantum-mechanical tunnelling. (b) shows the real part of the
wavefunction of such a state.

This phenomenon is known as quantum-mechanical tunnelling or the tunnel
effect.

To study the tunnel effect in more detail we consider the case of a beam
of particles of momentum }k and energy E = }

2k2/2m approaching a barrier
of height V0 (where V0 > E) and width b (see figure 2.4). A fraction of the
particles will be reflected at the barrier with momentum −}k, but some will
tunnel through to emerge with momentum }k at the far side of the barrier. The
incident, transmitted and reflected beams are all represented by plane waves, so
the wavefunction on the incident side, which we take to be x < 0, is

u = A exp(ikx)+ B exp(−ikx) (2.46)

Inside the barrier the wavefunction has the same form as (2.30)

u = C exp(κx)+ D exp(−κx) (2.47)

and beyond the barrier, which is the region x > b, particles may emerge moving
in the positive x direction, so the wavefunction will have the form

u = F exp(ikx) (2.48)

We note that because the barrier does not reach all the way to infinity, we
cannot drop the first term in (2.47) as we did in the square-well case. The
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Figure 2.4. A beam of particles represented by a plane wave is incident on a potential
barrier. Most particles are reflected, but some are transmitted by quantum-mechanical
tunnelling.

boundary conditions requiring both u and du/dx be continuous at x = 0 and
x = b can be applied in much the same way as before.

A + B = C + D

A − B = κ

ik
(C − D)

C exp(κ b)+ D exp(−κb) = F exp(ikb)

C exp(κ b)− D exp(−κb) = ik

κ
F exp(ikb)




(2.49)

Adding the first two equations and adding and subtracting the second two gives

2A =
(

1+ κ

ik

)
C +

(
1− κ

ik

)
D

2C exp(κ b) =
(

1+ ik

κ

)
F exp(ikb)

2D exp(−κb) =
(

1− ik

κ

)
F exp(ikb)




(2.50)

We can combine these to express F in terms of A:

F

A
= 4iκk

(2iκk + κ2 − k2) exp(−κb)+ (2iκk − κ2 + k2) exp(κb)
exp(−ikb)

(2.51)
The fraction of particles transmitted is just the ratio of the probabilities of

the particles being in the transmitted and incident beams, which is just |F |2/|A|2
and can be evaluated directly from (2.51). In nearly all practical cases, the
tunnelling probability is quite small, so we can ignore the term in exp(−κb) in
the denominator of (2.51). In this case the tunnelling probability becomes

|F |2
|A|2 =

16κ2k2

(κ2 + k2)2
exp (−2κb) = 16E(V0 − E)

V 2
0

exp (−2κb) (2.52)
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We see that this tunnelling probability is largely determined by the
exponential decay of the wavefunction within the barrier: the lower and narrower
the barrier is, the greater the likelihood of tunnelling. To apply this to the situation
of tunnelling out of a well as in figure 2.3, we would first have to make a Fourier
expansion of the wavefunction inside the well in terms of plane waves and then
form an appropriately weighted sum of the transmission probabilities associated
with them. In many cases, however, good semi-quantitative estimates can be
made simply by considering the exponential decay of the wavefunction within
the barrier.

A number of physical examples of tunnelling have been observed and two of
these—alpha particle decay and cold electron emission—will now be described.

Alpha decay

It is well known that some nuclei decay radioactively emitting alpha particles. The
alpha particle consists of two protons and two neutrons bound together so tightly
that it can be considered as retaining this identity even when within the nucleus.
The interaction between the alpha particle and the rest of the nucleus is made
up of two components; the first results from the so-called strong nuclear force
which is attractive, but of very short range, whereas the second is the Coulomb
interaction which is repulsive (because both the alpha particle and the residual
nucleus are positively charged) and acts at comparatively large distances. The
total interaction potential energy is sketched in figure 2.5(a) as a function of
the separation between the alpha particle and the nucleus, and we see that it
is qualitatively similar to that shown in figure 2.3 and discussed previously. It
follows that if the alpha particle occupies a quantum state whose energy is less
than zero, it will remain there indefinitely and the nucleus will be stable. If,
however, the form of the potential is such that the lowest energy state of the alpha
particle is greater than zero, but less than V0, it will be able to escape from the
nucleus by quantum-mechanical tunnelling. The probability of such emission will
depend on the actual shape of the barrier, particularly its height and width, which
accounts for the large variation in the observed decay constants of different nuclei.

Cold electron emission

This phenomenon is observed when a strong electric field is directed towards the
surface of a metal, resulting in the emission of electrons. This occurs even if the
electrons are not thermally excited (which would be thermionic emission) and so
do not have enough energy to escape classically. We first consider the situation in
the absence of a field (figure 2.5(b)), when the electrons are confined within the
metal by an energy barrier formed by the work function (see the discussion of the
photoelectric effect in chapter 1). When the electric field is applied, the potential
is changed, so that at a short distance from the surface of the metal the potential
energy is less than the energy of the electrons inside the metal. Now, although
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Figure 2.5. (a) shows the potential energy of interaction between an alpha particle and
a nucleus as a function of its distance from the centre of the nucleus while (b) shows the
potential energy of an electron near the surface of a metal with and without (broken line)
an applied electric field. In each case the particles can pass through the potential barrier by
quantum-mechanical tunnelling.

the electrons cannot classically penetrate the barrier at the metal surface, they
can pass through by quantum-mechanical tunnelling and the observation of cold
electron emission is therefore a confirmation of this effect.

In recent years, cold electron emission has been exploited in the scanning
tunnelling microscope. In this instrument, an electric potential is maintained
between a very sharp tungsten point and a metal surface above which it is
held very closely. A tunnelling current between the surface and the point is



32 The one-dimensional Schrödinger equations

Figure 2.6. An image of the (111) surface of silicon obtained by scanning tunnelling
microscopy. The bright peaks correspond to silicon atoms. The hexagonal symmetry is
a characteristic feature of this surface. (Supplied by P. A. Sloan and R. E. Palmer of the
Nanoscale Physics Research Laboratory in the University of Birmingham.)

measured and the point is scanned slowly across the metal surface. Variations
in the tunnelling current then represent changes in the separation between the
point and the source of electron emission. The method is very sensitive because
of the exponential factor in (2.52). A typical value of κ is 1010 m−1, so
there are significant changes in the tunnelling current when the tip-to-sample
distance changes by as little as 10−11 m. Using this technique, changes in the
tunnelling current can be observed as the point moves over individual atoms, and
so map the actual atomic structure on the metal surface. An example of this is
shown in figure 2.6 which shows a silicon surface at atomic resolution. (In this
case, in common with modern practice, a servo mechanism keeps the tunnelling
current constant by moving the tip perpendicular to the surface, and the image is
reconstructed from the record of the resulting tip movements.)

It should be noted that, although both these experiments imply that the alpha
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where λ′ = 2meλ/}
2. The solution of this equation is made simpler if we make

the substitution v = cos θ and write P(v) ≡ �(θ), leading to

d

dθ
= − sin θ

d

dv
= −(1− v2)1/2 d

dv

Equation (3.34) then becomes

d

dv

[
(1− v2)

d P

dv

]
+

[
λ′ − m2

1− v2

]
P = 0 (3.35)

We first consider the simpler special case where m is equal to zero; equation (3.35)
is then

d

dv

[
(1− v2)

d P

dv

]
+ λ′P = 0 (3.36)

The method of series solution which was previously employed in the case of the
one-dimensional harmonic oscillator (section 2.6) can now be applied and we put

P =
∞∑

p=0

apv
p (3.37)

Hence

d

dv

[
(1− v2)

d P

dv

]
= d

dv

∞∑
p=0

[ap pv p−1 − ap pv p+1]

=
∞∑

p=0

ap p(p − 1)v p−2 −
∞∑

p=0

ap p(p + 1)v p

=
∞∑

p′=0

ap′+2(p′ + 2)(p′ + 1)v p′ −
∞∑

p=0

ap p(p + 1)]v p

(3.38)

where p′ = p+2; because the terms with p = 0 and p = 1 in the first summation
on the second line are zero, the summation over p′ in the last line begins at p′ = 0.
As p′ is just an index of summation, we can re-write it as p and substitute from
(3.38) into (3.36):

∞∑
p=0

{ap+2(p + 2)(p + 1)− ap[p(p + 1)− λ′]}v p = 0

This can be true only if the coefficient of each power of v is zero, so we obtain
the recurrence relation

ap+2

ap
= p(p + 1)− λ′

(p + 1)(p + 2)

→ 1 as p →∞ (3.39)
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Thus, for large p the series (3.37) is identical to the Taylor expansion of the
function (1−v)−1 which diverges to infinity at the point v = 1. Such a divergence
in the wavefunction is not consistent with physical boundary conditions. It can be
avoided if the series terminates at some finite value of p, say p = l, and if a0 = 0
when l is odd and a1 = 0 when l is even. We therefore obtain the second quantum
condition

λ′ = l(l + 1) (3.40)

where l is an integer which is greater than or equal to zero. Thus P , now written
as Pl , is a polynomial of degree l which contains either only odd powers or only
even powers of v. These polynomials are known as the Legendre polynomials
and their properties are described in many mathematics textbooks. Explicit forms,
corresponding to particular values of l, can be obtained from (3.40) and (3.39);
for example

P0(v) = 1

P1(v) = v

P2(v) = 1
2 (3v

2 − 1)

P3(v) = 1
2 (5v

3 − 3v)




(3.41)

where the values of the constants a0 and a1 have been chosen in accordance with
established convention.

The solution of (3.35) in the general case of non-zero values of m is more
complicated and the reader is referred to a mathematics textbook for the details.
We note that (3.35) is independent of the sign of m, so we expect the solutions to
be characterized by l and |m| and we write them as P |m|l (v). (Note: |m| is not a
power in this case.) It can be shown2 that

P |m|l (v) = (1− v2)|m|/2 d |m|Pl

dv|m|
(3.42)

We can use (3.42) to obtain a condition restricting the allowed values of m.
Pl is a polynomial of degree l so its |m|th derivative, and hence P |m|l , will be zero

if |m| is greater than l. But if P |m|l is zero, the whole wavefunction must be zero
over all space, and this is physically unrealistic. We therefore have the condition

−l 6 m 6 l (3.43)

We have now solved the differential equations in θ and φ so we can combine
the solutions to obtain expressions for the angular part of the wavefunction, which
we now write as Ylm(θ, φ), the suffixes l and m emphasizing the importance of

2 The mathematically inclined reader can verify this result by substituting it into (3.35) and using
Leibniz’s expression for the nth derivative of a product to show that the result is equivalent to
(1− v2)|m|/2 times the |m|th derivative of the left-hand side of equation (3.36).



50 The three-dimensional Schrödinger equations

these quantum numbers in characterizing the functions. We have

Ylm(θ, φ) = (−1)m
[
(2l + 1)

4π

(l − |m|)!
(l + |m|)!

]1/2

P |m|l (cos θ)eimφ m > 0

(3.44)
where it can be shown that the factor in square brackets ensures normalization of
the function when it is integrated over all solid angles; that is

∫ 2π

0

∫ π

0
|Ylm(θ, φ)|2 sin θ dθ dφ = 1 (3.45)

The phase factors (−1)m in (3.44) are arbitrary, but chosen in accordance
with established convention. The functions Ylm are known as spherical harmonics
and the reader is once again referred to an appropriate mathematics textbook for
a discussion of their properties and a derivation of the form of the normalizing
constant. Explicit expressions for the spherical harmonics with l less than or
equal to two are given below and their shapes are illustrated in figure 3.3.

Y00 = 1

(4π)1/2

Y10 =
(

3

4π

)1/2

cos θ

Y1±1 = ∓
(

3

8π

)1/2

sin θe±iφ

Y20 =
(

5

16π

)1/2

(3 cos2 θ − 1)

Y2±1 = ∓
(

15

8π

)1/2

cos θ sin θe±iφ

Y2±2 =
(

15

32π

)1/2

sin2 θe±2iφ




(3.46)

A notable feature of figure 3.3 is that the wavefunctions have a particular
orientation in space even though the potential is spherically symmetric and the
direction of the z axis (sometimes known as the axis of quantization) is therefore
arbitrary. This apparent contradiction is resolved in the same way as in the similar
case of a particle in a square box discussed earlier. We first note that m does
not enter equation (3.25) which determines the energy levels of the system, so
there are always 2l + 1 degenerate states that differ only in their values of m. If
we measure the energy of such a system, we shall not be able to tell which of
these wavefunctions is appropriate and we must therefore average their squared
moduli in order to calculate the position probability distribution. The apparently
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Figure 3.3. Representations of the shapes of the spherical harmonics with quantum
numbers l,m, where l 6 2 and the z axis is vertical. In the case of m = 0, the dark
and light regions have opposite sign; when m �= 0, the function is complex and its phase
changes by 2mπ during a complete circuit of the z axis.

angularly dependent part of this quantity will therefore be given by

(2l + 1)−1
l∑

m=−l

|Ylm(θ, φ)|2

It is one of the standard properties of the spherical harmonics that this quantity
is spherically symmetric—as can be readily verified in the cases where l = 0, 1
and 2 by substituting the expressions given in equation (3.46)—so we once again
see that the predictions of quantum mechanics concerning physically measurable
quantities are consistent with what would be expected from the symmetry of the
problem.

The physical significance of the quantum numbers l and m will be discussed
in detail later (chapter 5). For the moment we note that m cannot be directly
connected with the quantization of the energy of the system as this quantity
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appears only in the radial equation, which we have yet to solve. It will turn out
that l and m are associated with the quantization of the angular momentum of
a particle in a central field: the square of the angular momentum has the value
l(l + 1)}2 and the z component of angular momentum has the value m}.

The radial equation

We now turn our attention to the radial equation (3.25) which determines the
energy levels of the system. Substituting the expression for λ obtained from the
angular solution (3.40) and remembering that λ′ = 2meλ/}

2, we get

− }
2

2me

1

r2

d

dr

(
r2 d R

dr

)
+

[
V (r)+ l(l + 1)}2

2mer2

]
R = E R

This can be simplified by making the substitution χ(r) = r R(r) which gives

− }
2

2me

d2χ

dr2 +
[

V (r)+ l(l + 1)}2

2mer2

]
χ = Eχ (3.47)

Apart from the second term within the square brackets, equation (3.47) is identical
in form to the one-dimensional Schrödinger equation. However, an additional
boundary condition applies in this case: χ must equal zero at r = 0 otherwise
R = r−1χ would be infinite at that point.3

As well as being mathematically convenient, the function χ(r) has a physical
interpretation in that |χ |2 dr is the probability of finding the electron at a distance
between r and r + dr from the origin averaged over all directions. This follows
from the fact that this probability is obtained by integrating |ψ(r, θ, φ)|2 over a
spherical shell of radius r and thickness dr . That is, it is given by

|R2(r)|r2dr
∫ 2π

0

∫ π

0
|Y (θ, φ)|2 sin θ dθ dφ = |χ2(r)|dr

using (3.45).
To progress further with the solution of the radial equation, the form of the

potential V (r) must be known, and in the next section we shall consider the
particular example of the hydrogenic atom.

3 The observant reader will have noticed that if R ∼ r−1 then
∫ r

0 |R|2r2 dr will be finite and
therefore the boundary condition set out in chapter 2 is not breached. It can be shown that the
condition χ = 0 at r = 0 follows from the requirement that the solutions of the Schrödinger
equation expressed in spherical polar coordinates must also be solutions when the equation is written
in Cartesian coordinates. Further details on this point can be found in P. A. M. Dirac The Principles
of Quantum Mechanics (Oxford 1974) chapter 6.
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3.4 The hydrogenic atom

We are now ready to apply quantum theory to the real physical situation of an
electron moving under the influence of a positively charged nucleus. If this
nucleus consists of a single proton, the system is a hydrogen atom, but the theory
is also applicable to the more general case of an atom with atomic number Z
(and hence nuclear charge Ze) with all but one of its electrons removed (for
example, He+, Li2+, etc.). In general, such a system is described as a hydrogenic
atom. The potential energy of interaction between the electron and the nucleus is
−Ze2/4πε0r , so equation (3.47) becomes4 in this case

− }
2

2me

d2χ

dr2
+

[
− Ze2

4πε0r
+ l(l + 1)}2

2mer2

]
χ = Eχ (3.48)

The solution of equation (3.48) will again involve considerable manipulation
which is simplified by making a suitable substitution. We define a new variable ρ

so that
ρ = (−8me E/}2)1/2r (3.49)

(note that E is negative for bound states as the potential is zero when r is infinite)
and hence

d2χ

dr2 = −
8me E

}2

d2χ

dρ2 (3.50)

Equation (3.48) now becomes

d2χ

dρ2
− l(l + 1)

χ

ρ2
+

(
β

ρ
− 1

4

)
χ = 0 (3.51)

where the constant β is defined as

β =
(
−me

2E

)1/2 Ze2

4πε0}
(3.52)

We first consider the solution to (3.51) in the case of very large ρ when the
equation becomes

d2χ

dρ2
− 1

4
χ = 0 (3.53)

4 We have assumed here that the electron is moving in the field of a fixed nucleus, but this will not be
exactly true as the nucleus is also moving in the field of the electron. As is shown in chapter 10, this
nuclear motion can be allowed for in exactly the same way as in classical mechanics by taking r to be
the distance between the nucleus and the electron, and µ to be the reduced mass of the nucleus (mass
m N ) and the electron (mass me). That is,

µ = m N me/(m N +me)

Because the mass of the electron is much smaller than that of the nucleus, µ is very nearly equal
to me and the effect of nuclear motion is small. However, rather than using the reduced mass in
the theoretical derivation, when comparison is made with experiment (such as the Rydberg constant
discussed later) the experimental values have been adjusted to remove the effect of nuclear motion.
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leading to
χ ∼ exp(−ρ/2) (3.54)

(where we have rejected a possible solution with positive exponent because it
diverges to infinity at large ρ). This suggests that we try

χ = F(ρ) exp(−ρ/2) (3.55)

as a solution to (3.51). On substitution we get

d2 F

dρ2
− d F

dρ
− l(l + 1)

ρ2
F + β

ρ
F = 0 (3.56)

We now look for a series solution to (3.56) and put

F =
∞∑

p=1

apρ
p (3.57)

The lower limit of this summation is p = 1 rather than p = 0, otherwise F and,
therefore, χ would not be zero at ρ = 0. Thus

d F

dρ
=

∞∑
p=1

papρ
p−1 (3.58)

and

d2 F

dρ2
=

∞∑
p=1

p(p − 1)apρ
p−2

=
∞∑

p=1

(p + 1)pap+1ρ
p−1 (3.59)

Also

F/ρ2 =
∞∑

p=1

apρ
p−2

= a1ρ
−1 +

∞∑
p=1

ap+1ρ
p−1 (3.60)

Substituting from equations (3.57) to (3.60) into (3.56) we get

− l(l + 1)a1ρ
−1 +

∞∑
p=1

[(p + 1)pap+1 − pap

− l(l + 1)ap+1 + βap]ρ p−1 = 0 (3.61)
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The coefficient of each power of ρ must vanish so we have

a1 = 0 unless l = 0

and

ap+1

ap
= p − β

p(p + 1)− l(l + 1)
(3.62)

→ p−1 as p →∞ (3.63)

We first note that the denominator on the right-hand side of (3.62) is zero if p = l.
This implies that al+1 (and, by implication, all other ap where p is greater than l)
must be infinite unless al is zero. But if al equals zero, it follows from (3.62) that
al−1, al−2 etc. must also equal zero. We conclude, therefore, that all ap with p
less than or equal to l must be zero if the solution is to represent a physically
realistic wavefunction. We also see that (3.63) is identical to the recurrence
relation for the terms in the series expansion of exp(ρ) and so χ , which equals
F exp(−ρ/2), will diverge like exp(ρ/2) as ρ tends to infinity. However, just
as in the case of solutions to the harmonic oscillator and Legendre polynomial
equations, this divergence can be prevented by ensuring that the series terminates
after a finite number of terms. For this to occur at the term p = n we must have

β = n > l (3.64)

and hence, using (3.52)

E ≡ En = − me Z2e4

2(4πε0)2}2n2
(3.65)

We have thus derived expressions for the discrete energy levels of the hydrogenic
atom in terms of the mass of the electron, the nuclear charge and the fundamental
constants e, } and ε0. It should be noted that the energy levels (3.65) are not
only independent of m, as would be expected from the earlier discussion, but
are also independent of l. This additional degeneracy is a particular feature of
the Coulomb potential and is not a general property of a spherically symmetric
system.

It is now an acid test of the theory developed so far that we compare these
energy levels with those experimentally measured from observations of atomic
spectra. We saw in chapter 1 that the line spectra of hydrogen could be accounted
for if the hydrogen atom were assumed to have a set of energy levels given by

En = −2π}cR0/n2 (3.66)

where n is a positive integer and R0 is the Rydberg constant. Comparison of (3.65)
and (3.66) shows at once that these have the same form so that there is at least
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qualitative agreement between theory and experiment. Quantitative comparison
is made using the measured values of the fundamental constants

me = 9.109 381 88× 10−31 kg

ε0 = 8.854 187 817× 10−12 F m−1

} = 1.054 571 596× 10−34 J s

e = 1.602 176 462× 10−19 C

c = 2.997 924 58× 108 m s−1

These lead to an estimate of R0 of 10 973 731.6 m−1, which is within one part in
1010 of the accepted best value.5 Moreover, the tiny discrepancy is less than
the estimated errors on the measurements of the relevant quantities. Similar
agreement is obtained for other hydrogenic atoms when the appropriate values
of the nuclear charge are substituted into equation (3.65). These results therefore
represent an important test of quantum-mechanical theory, which it has passed
with flying colours.6 Our belief in quantum mechanics does not of course rest on
this result alone: indeed an expression identical to (3.65) was derived by Niels
Bohr using an earlier theory which was subsequently shown to be incorrect when
applied to other more complex systems. However, although we shall compare
the results of calculation and experiment on a number of other occasions when
we shall always find agreement within the limits of experimental error, there are
very few examples of physical quantities whose values can be both measured
experimentally to such high precision and calculated exactly by solving the
appropriate quantum-mechanical equations.

The hydrogenic atom wavefunctions

We now complete our consideration of the hydrogenic atom by discussing the
form of the wavefunctions associated with the different energy levels. We
previously saw that the radial part of the wavefunction is consistent with the
boundary conditions only if the series (3.57) for F starts at the term p = l + 1
and terminates at p = n. We thus have

Fn(ρ) =
n∑

p=l+1

apρ
p (3.67)

where the coefficients ap can be expressed in terms of al+1 using the recurrence
relation (3.62) with β = n. The results are known as the Laguerre polynomials.
5 This value has been adjusted to remove the effects of nuclear motion (see footnote 4) and relativistic
corrections (see chapter 11).
6 Of course the quantum theory of atomic spectra is now so well established that formulae such as
(3.65) are themselves used in determining the best values of the fundamental constants, but the fact
that a wide variety of experimental data can be successfully and consistently used in this way is itself
a confirmation of the theory.
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We can then use (3.55) and the definition of ρ in terms of r to obtain
χ(r) and hence R(r). This can be combined with the appropriate spherical
harmonic to produce an expression for the complete time-independent part of the
wavefunction, u(r, θ, φ). This will be normalized if the spherical harmonic has
been normalized in accordance with (3.45) and the constant al+1 has been chosen
so that ∫ ∞

0
|R|2r2 dr = 1 (3.68)

Formally, then, we have

unlm = Rnl(r)Ylm(θ, φ) (3.69)

where the suffixes indicate the dependence of the various functions on the
quantum numbers n, l, and m. The wavefunctions corresponding to the five states
of lowest energy as determined in this way are

u100 = (Z3/πa3
0)

1/2 exp(−Zr/a0)

u200 = (Z3/8πa3
0)

1/2(1− Zr/2a0) exp(−Zr/2a0)

u210 = (Z3/32πa3
0)

1/2(Zr/a0) cos θ exp(−Zr/2a0)

u21±1 = ∓(Z3/πa3
0)

1/2(Zr/8a0) sin θ exp(±iφ) exp(−Zr/2a0)




(3.70)

where the constant a0 is defined as

a0 = 4πε0}
2/mee2

= 0.529 176 6× 10−10 m (3.71)

and is known as the Bohr radius.
The value of the azimuthal quantum number l is often denoted by a particular

letter code: states with l = 0, 1, 2, and 3 are labelled s, p, d , and f respectively.
This letter is sometimes prefixed by a number equal to the quantum number n, so
that the first state in (3.70) is known as the 1s state, the second is 2s and the others
are 2 p states.

The radial parts of the wavefunctions (3.70) are plotted as functions of r
in figure 3.4 for the case of the hydrogen atom where Z = 1. We see that the
constant a0 characterizes the width of the wavefunction of the lowest energy state
and that this width increases for states of higher energy. We can combine (3.71)
and (3.65) to express the energy levels in terms of a0:

En = − Z2e2

2(4πε0)a0n2
(3.72)

As the potential energy is given by V = −Ze2/4πε0r , an electron with this total
energy could only have positive kinetic energy for values of r less than 2n2a0/Z .
We see in figure 3.4 that the exponential tails of the wavefunctions penetrate the
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Figure 3.4. The radial parts, Rn,l , of the wavefunctions corresponding to some of the
energy states of the hydrogen atom are shown in (a). The corresponding radial probability
distributions, |χn,l |2 = r2|Rn,l |2, are displayed in (b).

classically forbidden region where r is greater than this in a manner very similar
to that discussed in the one-dimensional cases in chapter 2.

Figure 3.4 also shows |χ2(r)| = r2|R2(r)| for each state as a function of r .
As we pointed out earlier, this expression equals the probability that the electron
be found at a distance between r and r+dr from the origin (in any direction). We
see that this probability reaches a maximum at r = a0 in the case of the ground-
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state wavefunction. We particularly note that in all cases |χ |2 equals zero at the
origin, even though the square of the wavefunction can have its largest value at
that point. The reader should think carefully about this apparent contradiction and
how it can be resolved by understanding the different nature of the two probability
distributions represented by |ψ|2 and |χ |2.

Problems

3.1 Calculate the energy levels and obtain expressions for the associated wavefunctions in the case of
a particle moving in two dimensions in a rectangular, infinite-walled box of sides a and b. Discuss the
degeneracy of the system and the symmetry of the position probability distribution when a = b.

3.2 What is the symmetry of the position probability distribution and how is it related to the degeneracy
in the case of a particle confined to a three-dimensional box with cubic symmetry (that is, with
a = b = c)?

3.3 A particle moves in two dimensions in a circularly symmetry potential. Show that the time-
independent Schrödinger equation can be separated in plane polar coordinates and that the angular
part of the wavefunction has the form (2π)1/2 exp(imφ) where m is an integer. What is the symmetry
of the position probability distribution in this case?

3.4 Consider a circularly symmetric two-dimensional system similar to that described in problem 3.3
where the potential is zero for all values of r less than a and infinite otherwise. Show that the radial
part R(r) of the wavefunction must satisfy the equation

d2 R

dρ2
+ 1

ρ

d R

dρ
+

(
1− m2

ρ2

)
R = 0

where ρ = (2me E/}2)1/2r . In the case where m = 0 show that R = ∑∞
k=0 Akρ

k where Ak = 0 if

k is odd and Ak+2 = −Ak/(k + 2)2. Given that the first zero of this function is at ρ = 2.405, obtain
an expression for the energy of the ground state of the system.

3.5 A particle of mass me moves in a three-dimensional spherically symmetric well where V = 0,
r 6 a and V = V0, r > a. Show that the energies of those states with quantum number l = 0 are
determined by the condition k cot ka = −κ in the notation used in chapter 2. Show that there are
no bound states of such a system unless V0 > }

2π2/8ma2. Would you expect this condition to be
modified if states with l �= 0 were also considered?

3.6 The (negative) binding energy of the ground state of the deuteron (neutron+proton) is 2.23 MeV.
Assuming that the interaction potential is of the form described in problem 3.5 with a = 2.0 ×
10−15 m, find the corresponding value of V0. Do bound states of the deuteron other than the ground
state exist?

Hints: Use the reduced mass (see footnote 4); x = 1.82 is a solution to the equation
x cot x = −0.46.

3.7 Verify that ∫ 2π

0

∫ π

0
Y ∗lm Yl′m′ sin θ dθ dφ = 0 unless l = l′ and m = m′

for all values of l, l′ , m and m′ up to and including those with l and/or l′ equal to 2, where Ylm is a
spherical harmonic and Y ∗lm its complex conjugate.

3.8 Use the hydrogen atom wavefunctions and the probabilistic interpretation of the wavefunction to
calculate (i) the most probable and (ii) the average value, of the distance between the electron and
proton in a hydrogen atom in its 1s state.



Chapter 4

The basic postulates of quantum mechanics

In the previous chapters we have seen how solutions to the time-independent
Schrödinger equation correspond to the allowed energy levels of a quantum
system and how, in the hydrogen atom case in particular, the results of this
procedure are in extremely good agreement with experiment. It would be possible
to extend the process to a prediction of the energy levels of other atoms. We would
find that the corresponding Schrödinger equations could no longer be solved
exactly, but that approximations could be developed which, when combined with
computational techniques, would lead to predicted energy levels that were once
again in very good agreement with experiment. However, such a programme,
most of which is beyond the scope of this book in any case, would be premature
at this stage as we have not yet established a general procedure which will do more
than predict the allowed energy levels of a particle moving in a potential and the
probability that it is in the vicinity of a particular point in space. We do not yet
know, for example, how to predict the momentum of an electron in a hydrogen
atom; we do not even know if it has a definite value or if it can only be specified
by a probability distribution, as is the case for electron position. We have as yet
no way of predicting under what conditions an atom undergoes a transition from
one state to another, emitting energy in the form of a quantum of electromagnetic
radiation.

Answers to this and similar questions require a more general and more
sophisticated approach to quantum mechanics. We shall develop the foundations
of this in the present chapter and we shall see that it is based on five postulates.
In developing and discussing the postulates, we shall build on what we have
already done in previous chapters to make each postulate seem at least reasonable.
It is important to remember that this is an inductive process; i.e. although the
postulates can be made to appear reasonable by considering particular examples,
they can never be rigorously derived in this way. We encountered a previous
example of an inductive argument when we set up the Schrödinger equation on
the basis of a consideration of classical waves and the experimental de Broglie
relations; we emphasized then that this argument in no way represented a proof
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of the Schrödinger equation and that our belief in its correctness lay in the fact
that it was successful in predicting the results of experiments. In a similar way
the correctness or otherwise of the basic postulates of quantum mechanics rests
on the agreement between deductions from them and the results of experiments.
To the present time quantum mechanics has withstood every experimental test;
there are many fields of physics that are not yet completely understood, but there
are no experimental results that contradict or falsify the fundamental principles of
quantum mechanics. Despite this, the fundamental basis of the subject contains
ideas that run very much against the intuition we have all developed in our
interaction with the classical world. We have come across some of these already
in our discussion of wave–particle duality in earlier chapters and we shall come
across some more in this chapter and later. However, we shall postpone any
detailed discussion of the foundations of the subject to the last chapter, where
we shall attempt to introduce the reader to the main ideas underlying the vigorous
philosophical debate about the conceptual basis of quantum mechanics that has
gone on ever since the early days of the subject.

It might therefore have been expected that we should simply have stated the
basic postulates at the beginning of this book, thereafter concentrating on deriving
predictions of experimental results from them, and indeed such an approach
is sometimes adopted. However, the ideas of quantum mechanics are rather
abstract and most students understand them more easily when introduced to them
gradually using inductive arguments based on a knowledge of the wave mechanics
of atoms as described in the previous chapters.

4.1 The wavefunction

The experimental evidence for the wave properties of the electron and the success
of the Schrödinger equation in predicting the energy levels of the hydrogen atom
indicate that the physical properties of a particle moving under the influence
of a potential can be obtained from the wavefunction. As we saw, this is
a single-valued function of the coordinates of the particle and the time; it is
finite, differentiable and its squared modulus must be integrable over all possible
particle positions. It is important to remember that, although the measurable
properties of a system are derived from the wavefunction, it is not itself a physical
quantity. However, it is a fundamental principle of quantum mechanics that the
wavefunction contains all the information it is possible to obtain about a physical
system in a particular state. The first postulate then concerns the existence of the
wavefunction.

Postulate 4.1 For every dynamical system there exists a wavefunction that is a
continuous, square-integrable, single-valued function of the parameters of the
system and of time, and from which all possible predictions about the physical
properties of the system can be obtained.
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This statement covers the case of a particle moving in a potential where the
‘parameters of the system’ are the particle coordinates, but it also refers to more
general situations: for example, the parameters may be the coordinates of all the
particles of a many-body system and may include internal variables such as ‘spin’.

Notation

In the previous chapters we used the symbol � to represent a general solution
to the time-dependent Schrödinger equation and the symbol u (sometimes with a
subscript) as the time-independent part of the wavefunction of a system in a state
of given energy. We shall continue this notation in the present chapter, and in
addition we shall use the symbol ψ to represent a general wavefunction, whose
time dependence we are not explicitly considering, and the symbol φ (often with
a subscript) when the system is in what we shall call an ‘eigenstate’—that is when
some dynamical quantity (not necessarily the energy) has a known value.

4.2 The dynamical variables

In this section we consider how dynamical variables (position, momentum,
angular momentum, energy, etc.) are represented mathematically in quantum
mechanics. In classical mechanics, such quantities are represented by algebraic
variables: position coordinates x , y, z; momentum components px , py, pz; energy
E ; etc. However, algebraic variables can take on any value whereas we have
seen that quantum-mechanical properties are often confined to a discrete set of
values (e.g. the energy levels of a hydrogen atom). Moreover, algebraic variables
imply precise values, while the uncertainty principle indicates that simultaneous
specification of the magnitudes of two dynamical quantities (e.g., position and
momentum) is not always possible in quantum mechanics. We therefore look for
a new way of representing dynamical quantities mathematically.

Let us consider again the time-independent Schrödinger equation in the case
of a particle moving in a potential V (r), which was given in equation (3.7) and
which we now write in the form[

− }
2

2m
∇2 + V (r)

]
un = Enun (4.1)

or

Ĥun = Enun where Ĥ = − }
2

2m
∇2 + V (4.2)

The quantity in square brackets in (4.1), which is defined as Ĥ in (4.2), is an
example of a mathematical operator. Such operators operate on functions (in this
case the un) to produce new functions, and equation (4.2) therefore states that
the energy levels En and corresponding wavefunctions un are such that, when
the operator Ĥ operates on un , it produces a result equivalent to multiplying un
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by the constant En . The quantities En and the functions un are known as the
eigenvalues and eigenfunctions respectively of the operator Ĥ , and we say that
the energy of the quantum-mechanical system is represented by an operator Ĥ
whose eigenvalues are equal to the allowed values of the energy of the system.
For historical reasons Ĥ is often known as the Hamiltonian operator.

We now consider the significance of the eigenfunctions un . In the earlier
chapters we interpreted un as representing the wavefunction of the system when
it was in a state whose energy is En . This implies that if the energy of the system
were to be measured when the wavefunction is un , we should certainly obtain
the result En . As a second measurement of the energy performed immediately
after the first would be reasonably expected to yield the same result, we conclude
that the wavefunction of a quantum-mechanical system will be identical to the
corresponding eigenfunction of the Hamiltonian operator immediately after a
measurement of the energy of the system.

It is a reasonable extension of these arguments to say that other dynamical
variables (position, momentum, etc.) should also be capable of representation
by operators, that the eigenvalues of these operators should correspond to the
possible results of experiments carried out to measure these quantities, and that
the wavefunction of a quantum-mechanical system should be identical to the
corresponding eigenfunction following the measurement represented by such an
operator. Consider first the momentum operator: the first part of the Hamiltonian
(4.2) corresponds to the kinetic energy of the particle, and classically this is
related to the particle momentum by the expression

T = p2/2m (4.3)

If we assume that a similar relation holds in quantum mechanics we get

1

2m
P̂2 = − }

2

2m
∇2 (4.4)

where P̂ is the momentum operator. An expression for P̂ which is consistent with
this is

That is,

P̂ = −i}∇

P̂x = −i}
∂

∂x
etc.




(4.5)

where P̂x is the operator representing the x component of the momentum. The
negative sign in the definition of P̂x is chosen to ensure consistency with our
earlier results as we shall soon see.

We now consider the eigenvalue equation of the operator representing the
x component of momentum: if the eigenvalues and eigenfunctions are p and φ

respectively, then

−i}
∂

∂x
φ = pφ (4.6)
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that is,
φ = A exp(ikx) (4.7)

where A is a constant and k = p/}. But this is just the de Broglie relation
connecting wave number and momentum (2.1); and equation (4.7) is therefore
consistent with the discussion in earlier chapters. Moreover, this explains the
choice of sign for the momentum operator (4.5).

We now note two points about the momentum eigenvalue equation. First,
there is a solution to (4.6) for any value of p so the possible values of the
momentum of a particle are not confined to a discrete set in the way that the
allowed energy levels of a bound particle are. Second (apart from the case of a
free particle when V (r) is constant everywhere), the momentum eigenfunctions
are different from the energy eigenfunctions. Thus if the energy of a bound
particle is measured, the wavefunction immediately after the measurement will
not be an eigenfunction of the momentum operator. It follows that the outcome of
a measurement of the momentum of a bound particle when the energy is already
known cannot be accurately predicted. We shall return to this point in more detail
later when we discuss the fourth postulate.

We now consider the operator representing the position of a particle,
confining our discussion to one dimension for the moment. The eigenfunction
equation can be written formally as

X̂φ = x0φ (4.8)

where x0 and φ now represent the position eigenvalues and eigenfunctions
respectively and we have to obtain a form of X̂ which is consistent with what we
already know. We remember that in the previous chapters the squared modulus
of the wavefunction was interpreted as the probability density for the position of
the particle. If, therefore, the eigenfunction φ is to represent the wavefunction
immediately after a position measurement yielding the result x0, it follows that φ
must be very large inside a region of very narrow width � in the vicinity of x and
zero elsewhere. In the limit as � goes to zero, the wavefunction has the form of a
Dirac delta function and is written as δ(x − x0). In this case

X̂δ(x − x0) = x0δ(x − x0) (4.9)

which equation is satisfied if
X̂ ≡ x (4.10)

as can be seen by substituting (4.10) into (4.9) and considering separately the
point x = x0 (where the expressions on the two sides of (4.9) are identical) and
the region x �= x0 (where both sides are zero). That is, the quantum-mechanical
operator representing the x coordinate of a particle is just the algebraic variable
x . In three dimensions, it follows that the particle position operator is the vector r
and we note that this is consistent with the fact that we wrote the energy operator
in the form

Ĥ = − }
2

2m
∇2 + V (r)
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where V (r) is just the potential expressed as a function of the algebraic variable
r. We thus conclude that the position and momentum of a particle can be
represented by the operators r and −i}∇ respectively. We saw that the kinetic
and potential energy operators have the same functional dependence on the
operators representing position and momentum as do the corresponding quantities
in classical mechanics and we assume that this relationship also holds for other
dynamical quantities which can be expressed classically as functions of r and p.
We write the eigenfunction equation in the case of a general operator Q̂ as

Q̂φn = qnφn (4.11)

Before expressing all this in the form of formal postulates, we shall establish
one general property of operators used to represent dynamical variables. We
have interpreted the eigenvalues of the operators discussed so far as representing
the possible results of experiments carried out to measure the values of the
corresponding physical quantities. If this interpretation is to be correct, it is clear
that these eigenvalues must be real numbers even though the eigenfunctions, or
the operators themselves, may be imaginary (like the momentum operator) or
complex. One class of mathematical operators that always have real eigenvalues
consists of the Hermitian operators. Hermitian operators are defined such that if
f (r) and g(r) are any well-behaved functions of r which vanish at infinity then
the operator Q̂ is Hermitian if and only if∫

f Q̂g dτ =
∫

gQ̂∗ f dτ (4.12)

where Q̂∗ is the complex conjugate of Q̂ and the integrals are over all values of r.
The complex conjugate of an operator is defined so that, for any function f , Q̂∗ f ∗
must equal (Q̂ f )∗; in nearly all cases, this definition is equivalent to replacing i
with −i wherever it appears in Q̂.

Readers familiar with Hermitian matrices may like to note that (4.12) is
equivalent to

Q12 = Q∗21 (4.13)

where

Q12 =
∫

f ∗1 Q̂ f2 dτ (4.14)

(4.13) follows directly from (4.12) if we replace f and g by f ∗1 and f2
respectively.

We now show that the eigenvalues of a Hermitian operator are real.
Let

Q̂φn = qnφn

then
Q̂∗φ∗n = q∗nφ∗n
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Hence ∫
φ∗n Q̂φn dτ = qn

∫
φ∗nφn dτ (4.15)

and ∫
φn Q̂∗φ∗n dτ = q∗n

∫
φnφ

∗
n dτ (4.16)

But if Q̂ is Hermitian it follows from (4.12) (identifying f with φn and g with φ∗n )
that the left-hand sides of (4.15) and (4.16) must be equal. Equating the right-hand
sides of these equations we get

qn

∫
|φn |2 dτ = q∗n

∫
|φn|2 dτ (4.17)

and hence
qn = q∗n (4.18)

so that qn is real as required.
The converse of this theorem (that all operators with real eigenvalues are

Hermitian) is not true: the Hermitian property is a stronger condition on the
operator than the reality of the eigenvalues. However, as it has been found
possible to represent all physical quantities by Hermitian operators, and as these
have a number of useful properties, some of which will be discussed later, it is
convenient to impose this Hermitian condition.

We can readily show that the operators representing position and momentum
in one dimension are Hermitian: in the case of x this follows trivially from
substitution into the one-dimensional equivalent of (4.12) while in the case of
P̂x we have ∫ ∞

−∞
f P̂x g dx = −i}

∫ ∞

−∞
f
∂g

∂x
dx

Integrating by parts, the right-hand side becomes

−i}

{[
f g

]∞
−∞ −

∫ ∞

−∞
g
∂ f

∂x
dx

}

The first term is zero because f and g vanish at infinity so we have∫ ∞

−∞
f P̂x g dx = i}

∫ ∞

−∞
g
∂ f

∂x
dx

=
∫ ∞

−∞
g P̂∗x f dx

as required. We leave it as an exercise for the reader to extend this argument
to three dimensions and to confirm that other operators considered so far are
Hermitian.

We can now summarize the contents of these paragraphs in two postulates.
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Postulate 4.2 Every dynamical variable may be represented by a Hermitian
operator whose eigenvalues represent the possible results of carrying out a
measurement of the value of the dynamical variable. Immediately after
such a measurement, the wavefunction of the system will be identical to
the eigenfunction corresponding to the eigenvalue obtained as a result of the
measurement.

Postulate 4.3 The operators representing the position and momentum of a
particle are r and −i}∇ respectively. Operators representing other dynamical
quantities bear the same functional relation to these as do the corresponding
classical quantities to the classical position and momentum variables.

Orthonormality

One important property of the eigenfunctions of a Hermitian operator is known
as orthonormality and is expressed by the following relation:∫

φ∗nφm dτ = δnm (4.19)

where φn and φm are eigenfunctions of some Hermitian operator and δnm is
the Kronecker delta defined by δnm = 0, n �= m; δnm = 1, n = m. To
prove this consider a Hermitian operator Q̂ whose eigenvalues are qn and whose
eigenfunctions are φn . That is,

Q̂φn = qnφn (4.20)

Thus ∫
φ∗n Q̂φm dτ = qm

∫
φ∗nφm dτ (4.21)

(because qm is a constant which can be taken outside the integral) and similarly
(remembering that qn is real)∫

φm Q̂∗φ∗n dτ = qn

∫
φmφ∗n dτ (4.22)

But it follows from the definition of the Hermitian operator (4.12) that the left-
hand sides of (4.21) and (4.22) are equal. We thus have, equating the right-hand
sides, ∫

φ∗nφm dτ = 0 or qm = qn (4.23)

The second alternative implies that m = n or that the eigenfunctions φm and φn

correspond to the same eigenvalue—i.e. that they are degenerate. We postpone a
discussion of degeneracy until later in this chapter and conclude for the moment
that ∫

φ∗nφm dτ = 0 m �= n (4.24)
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Turning now to the case m = n, it is clear from the eigenvalue equation
(4.20) that if φn is an eigenfunction of Q̂ then so is Kφn where K is any
constant. As |φn |2 dτ represents the probability of finding the particle in the
volume element dτ and as the total probability of finding the particle somewhere
in space is unity, we choose the scaling constant so that∫

|φn|2 dτ = 1 (4.25)

Equations (4.24) and (4.25) are clearly equivalent to (4.19) so we have proved
orthonormality in the case of non-degenerate eigenfunctions. We shall see
later that, although degenerate eigenfunctions are not necessarily orthogonal, an
orthonormal set of wavefunctions can always be chosen in the degenerate case
also.

4.3 Probability distributions

So far we have postulated that physical quantities can be represented by
Hermitian operators whose eigenvalues represent the possible results of
experimental measurements and whose corresponding eigenfunctions represent
the wavefunction of the system immediately after the measurement. Clearly
if, for example, the wavefunction of a system is also identical to one of the
energy eigenfunctions un immediately before a measurement of the energy of
the system, then the result En will definitely be obtained; however, we have not
yet postulated what the outcome of the experiment will be if the wavefunction
before the measurement is not one of the un . The first point to be made is that,
in this case, quantum mechanics does not make a precise prediction about the
result of the energy measurement. This is not to say that a precise measurement
of the energy is impossible (in fact postulate 4.2 clearly states that only a result
precisely equal to one of the energy eigenvalues is possible) but that the result of
such a measurement is unpredictable. Clearly, the measurement of energy is just
one example and similar reasoning can be applied to the measurement of other
physical properties. The inability of quantum mechanics to predict the actual
outcome of many individual physical events is a fundamental feature of the theory.
However, the relative probabilities of the different possible outcomes can always
be predicted, and we shall now proceed to develop a postulate concerning these
probabilities and how they can be derived from a knowledge of the wavefunction
and the operators representing the dynamical variables.

We have already seen (cf. Section 2.1) how knowledge of the wavefunction
can be used to predict the relative probabilities of the possible outcomes of a
measurement of the position of a particle. We said there that if the wavefunction
of the system before the position measurement is carried out is ψ(r), then the
probability that the position measurement will yield a result within the element
of volume dτ around r is |ψ(r)|2 dτ . The outcome of a position measurement
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Figure 4.1. An example of quantum measurement theory. The left-hand part of the
diagram shows how the wavefunction before the measurement can be expressed as a sum
of parts, each of which corresponds to one of the seven possible outcomes. After the
measurement the wavefunction ‘collapses’ at random into one of the functions shown on
the right. (NB: The vertical scale of the right-hand peaks is reduced.)

is exactly predictable only if the wavefunction is zero everywhere except at a
particular point where it is very large. We saw in the previous section that this
‘Dirac-delta’ form is an eigenfunction of the position operator r.

Dirac deltas give rise to technical problems that are best avoided at this stage
and in any case no practical measurement can determine the particle position with
infinite accuracy. Instead, we consider an experiment where the particle is found
in one of a series of detectors arranged along the x axis, each one having a small,
but finite, width � as in figure 4.1. After the measurement, the particle is found in
one of the detectors, so its wavefunction must be zero everywhere except within
a peak of height h (not Planck’s constant) and width �. The total probability of
finding the particle somewhere must be unity, so it follows that

h2� = 1 and h = �−1/2 (4.26)

We denote the nth such wavefunction as φn

Suppose now that the wavefunction before the measurement is ψ(x). We
imagine ψ(x) divided into a series of strips of width � corresponding to the
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particle detectors (see figure 4.1 again) so we can approximate ψ(x) by ψ(xn)

inside the nth strip. This approximation becomes exact in the limit of small �.
Remembering that φn represents a peak of height h covering this strip, we can
write

ψ(x) =
∑

n

ψ(xn)φn/h

=
∑

n

anφn (4.27)

where

an = ψ(xn)/h = �1/2ψ(xn) (4.28)

We already know the probability of finding a particle in the element dx at x is
|ψ(x)|2, so the probability of finding the particle within the strip at xn is just
|ψ(xn)|2�, which equals |an|2.

We now generalize this to a measurement represented by the operator Q̂
(where Q̂φn = qnφn) on a system whose wavefunction is known to be ψ

immediately before the measurement. We postulate that the above procedure can
be applied quite generally so that

ψ =
∑

n

anφn (4.29)

(where the summation is over all the eigenfunctions of the operator) and the
probability of obtaining the result qn , when the quantity represented by Q̂ is
measured, is |an|2. The expression (4.29) relies on a mathematical property of
the eigenfunctions of a Hermitian operator known as completeness. This states
that any well-behaved function, such as the wavefunction ψ , can be expressed
as a linear combination of the eigenfunctions φn which are then said to form a
complete set.

We now re-state this as the fourth postulate.

Postulate 4.4 When a measurement of a dynamic variable represented by the
Hermitian operator Q̂ is carried out on a system whose wavefunction is ψ , then
the probability of the result being equal to a particular eigenvalue qm will be
|am |2, where ψ = ∑

n anφn and the φn are the eigenfunctions corresponding to
the eigenvalues qn .

We now show that in the case where both the wavefunction ψ and the
eigenfunctions φn are known, we can use orthonormality to obtain an expression
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for an: ∫
φ∗nψ dτ =

∫
φ∗n

∑
m

amφm dτ

=
∑

m

am

∫
φ∗nφm dτ

=
∑

m

amδnm = an (4.30)

So that

an =
∫

φ∗nψ dτ (4.31)

The right-hand-side of (4.31) is sometimes called the overlap integral connecting
ψ and φn . Essentially it is a measure of the extent to which the two functions are
similar, so this makes some sense of the fact that its square is the probability of
obtaining the corresponding result of the measurement.

We developed our argument by considering the measurements of position,
so let us see what it now gives us for momentum measurements. Suppose we
perform an experiment to measure the momentum of a particle as having one of
the values pn, where these are a set of closely spaced bands—similar to those
considered in the earlier position measurement. Applying postulate 4.4, we say
that the probability of obtaining the result pn(= }kn) is |an|2 where, using the
momentum eigenfunctions (4.7),

ψ(x) =
∑

n

an A exp iknx (4.32)

We see that in this case, completeness leads to an expression that is just the Fourier
expansion of the function ψ(x). Applying (4.31) to the momentum case, we get

an =
∫

ψ(x)A exp (−iknx)dx (4.33)

which is the standard expression for the Fourier amplitude.

Continuous eigenvalues

The previous arguments have been developed on the assumption that the
eigenvalues of the operator in question have discrete values that can be indexed
by an integer such as n. This is true for the energy levels of a particle bound
to a potential and (as we shall see later) for the angular momentum eigenvalues,
but other quantities, notably position and momentum, have a continuous range of
eigenvalues. There are several ways by which these cases can be brought within
our formalism. One way is to ‘force’ the problem to be discrete. We did this
earlier in the case of position by considering narrow ranges of position instead
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of infinitesimal points. Another way of doing this is to imagine the system to
be contained inside a large box, so that the eigenvalues are closely spaced, but
not continuous. Outside the box, the wavefunction may be assumed to be zero
or we may imagine that its form inside the box is repeated periodically through
all space. The latter device ensures that the wavefunction can be expanded as a
Fourier series, rather than a transform and this is effectively what we did in (4.32).
An alternative is to adapt our formalism to the continuous case by making use of
the properties of Dirac-delta functions. Writing the general eigenvalue equation
(4.11) as

Q̂φ(k, x) = q(k)φ(k, x) (4.34)

where the summation index, n is replaced by the continuous variable k, the
equivalent of (4.29) is

ψ(x) =
∫

a(k)φ(k, x)dk (4.35)

Instead of |an|2 as the probability of getting the result qn we have |a(k)|2dk
as the probability of getting a result inside the range dk in the vicinity of k. The
orthonormality condition (4.19) then becomes∫

φ∗(k, x)φ(k ′, x)dx = δ(k − k ′) (4.36)

As an example, we show how momentum eigenfunctions can be treated in
this way, restricting ourselves to one dimension. We put

φ(k, x) = (2π)−1/2 exp(ikx)

so that

ψ(x) = (2π)−1/2
∫

a(k) exp(ikx)dk

and

a(k) = (2π)−1/2
∫

ψ(x) exp(ikx)dx (4.37)

a(k) is therefore the Fourier transform of ψ(x) and can be thought of as a
‘wavefunction in k space’.

It should be noted that k may represent a set of variables, rather than a single
variable. For example, representation of the momentum of a three-dimensional
system requires a vector k with three components. Similarly, in many discrete
systems the index n used before represents a set of several integer indices.

Summary

We have now set out the core ideas of quantum measurement theory and the reader
would be wise to pause at this point and ensure that they have been grasped.
Putting it all a little less formally:
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1. A quantum system has a wavefunction associated with it.
2. When a measurement is made, the result is one of the eigenvalues of the

operator associated with the measurement.
3. As a result of the measurement the wavefunction ‘collapses’ into the

corresponding eigenfunction.
4. The probability of a particular outcome equals the squared modulus of the

overlap between the wavefunctions before and after the measurement.
Look again at figure 4.1 and make sure you understand how this applies to

the case of a position measurement.

Expectation values

We can use this formalism to predict the average value that will be obtained
from a large number of measurements of the same quantity. We assume that
the wavefunctions before each experiment are identical. An example would be a
stream of particles whose positions were all measured with an apparatus such as
that in figure 4.1. This average is known as the expectation value and is obtained
in the case of a wavefunction ψ and an operator Q̂ as follows. Consider the
expression ∫

ψ∗ Q̂ψ dτ

Using the expansion of ψ in terms of the eigenfunctions φn of Q̂ (4.29) we can
write this as ∫

ψ∗ Q̂ψ dτ =
∫ (∑

m

a∗mφ∗m
)

Q̂

(∑
n

anφn

)
dτ

=
∑
m,n

a∗manqn

∫
φ∗mφn dτ

=
∑
m,n

a∗manqnδmn

=
∑

n

|an|2qn (4.38)

But postulate 4.4 states that |an|2 is just the probability that the value qn be
obtained in the measurement, so the left-hand side of (4.38) is clearly the
expectation value we are looking for. This is often written as 〈Q̂〉 so we have

〈Q̂〉 =
∫

ψ∗ Q̂ψ dτ (4.39)

Thus, if we know the wavefunction of the system and the operator representing
the dynamical variable being measured, we can calculate the expectation value.
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4.4 Commutation relations

Consider the following expression where ψ is any wavefunction, and X̂ and P̂x

are the operators representing the x coordinate and x component of momentum
of a particle:

(P̂x X̂ − X̂ P̂x )ψ = −i}
∂

∂x
(xψ)− x

(
−i}

∂ψ

∂x

)

= −i}x
∂ψ

∂x
− i}ψ + i}x

∂ψ

∂x
= −i}ψ (4.40)

We note two important points. First, the effect on ψ of the product of two
quantum-mechanical operators is, in general, dependent on the order in which
the operators are applied: that is, unlike algebraic variables, quantum-mechanical
operators do not in general commute. Second, the result (4.40) is completely
independent of the particular form of ψ so we can write

[P̂x , X̂ ] ≡ P̂x X̂ − X̂ P̂x = −i} (4.41)

where [P̂x , X̂ ] is defined by (4.41) and is known as the commutator or commutator
bracket of P̂x and X̂ . Similar arguments to these can be used to show that

[P̂y, Ŷ ] = [P̂z, Ẑ ] = −i}

and that commutators of the form [X̂ , Ŷ ], [P̂x , Ŷ ], [P̂x , P̂y ] etc., are all equal to
zero. All the commutators relating to the different components of position and
momentum can therefore be collected together in the following statements

[X̂i , X̂ j ] = [P̂i , P̂j ] = 0

[P̂i , X̂ j ] = −[X̂ j , P̂i ] = −i}δi j

}
(4.42)

where we are now using the notation X̂1 ≡ X̂ ; X̂2 ≡ Ŷ ; etc.
Expressions for the commutation relations between other pairs of operators

representing dynamical variables can be obtained in a similar manner, although
not every commutator is equal to a constant as was the case for [P̂x , X̂ ], etc.
For example, the commutator bracket of the x coordinate of a particle and its
kinetic energy [X̂ , T̂ ] can be shown to be the operator i}P̂x/m. Commutation
relations are generally of great importance in quantum mechanics. In fact it is
possible to use the expressions (4.42) to define the operators representing position
and momentum rather than making the explicit identifications, X̂ ≡ x and P̂x =
−i}∂/∂x , etc. Clearly other sets of operators could be chosen which would satisfy
these commutation relations; for example, the momentum operator could be put
equal to the algebraic variable p with the one-dimensional position operator being
i}∂/∂p, but it can be shown that the physical predictions of quantum mechanics
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are independent of the choice of operators provided the commutation relations
(4.42) are satisfied. It is possible to develop much of the formal theory of quantum
mechanics using the commutation relations without postulating particular forms
for the operators and this ‘representation-free’ approach is employed in many
advanced texts. However, although we shall prove several important relations
without using explicit expressions for the operators, we shall use the ‘position
representation’ set up in postulate 4.3 whenever this makes the argument clearer
or more readily applicable to particular examples.

We shall now use the concept of the commutator bracket to discuss the ideas
of compatible measurements and the uncertainty principle.

Compatibility

Two physical observables are said to be compatible if the operators representing
them have a common set of eigenfunctions. This means that if one quantity is
measured, the resulting wavefunction of the system will be one of the common
eigenfunctions; a subsequent measurement of the other quantity will then have a
completely predictable result and will leave the wavefunction unchanged. (As will
be seen later, this statement has to be modified in the degenerate case.) We shall
now show that the operators representing compatible measurements commute.
Let the operators be Q̂ and R̂ with respective eigenvalues qn and rn and common
eigenfunctions φn . Then, if ψ is any physical wavefunction which can therefore
be written in the form (4.29)

ψ =
∑

n

anφn

we have

[Q̂, R̂]ψ =
∑

n

an(Q̂ R̂φn − R̂ Q̂φn)

=
∑

n

an(Q̂rnφn − R̂qnφn)

=
∑

n

an(rnqnφn − qnrnφn)

= 0

Thus [Q̂, R̂] = 0 if Q̂ and R̂ represent compatible observables. The converse can
also be proved in the non-degenerate case (the degenerate case is discussed later
in this chapter) as we now show. Given that the operators Q̂ and R̂ commute, let
φn be an eigenfunction of Q̂ so that

Q̂ R̂φn = R̂ Q̂φn = R̂qnφn = qn R̂φn (4.43)

It follows directly from (4.43) that (R̂φn) is also an eigenfunction of Q̂ with
eigenvalue qn . In the absence of degeneracy therefore (R̂φn) can differ from φn
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only by a multiplicative constant. If we call this constant rn we have

R̂φn = rnφn

and φn must therefore be an eigenfunction of both Q̂ and R̂. Thus, in order to test
whether two quantities are compatible, it is sufficient to calculate the commutator
of the operators representing them and check whether or not it is equal to zero.
For example, it follows from this and from the commutation relations (4.42) that
measurements of the three positional coordinates can be made compatibly, as can
measurements of the three components of momentum. Moreover, a momentum
component can be measured compatibly with the measurement of either of the
other two position coordinates, but not with the position coordinate in the same
direction. In the case of a free particle, the energy operator (P̂2/2m) commutes
with the momentum operator (P̂) and these two quantities can therefore be
measured compatibly: the common eigenfunctions in this case are plane waves
of the form (4.7).

4.5 The uncertainty principle

One of the most well-known ideas in quantum mechanics is Heisenberg’s
uncertainty principle, which we discussed briefly in chapter 1. Arguably, it is
also the most misunderstood idea in the field and we shall try to clear up some
of this confusion later in this section. However, before doing so we shall use the
formalism developed so far to obtain a general form of the uncertainty principle
applicable to any pair of measurements.

We first need to establish some properties of pairs Hermitian operators. We
will show that if Q̂ and R̂ are Hermitian operators then, although the product
Q̂ R̂ need not be Hermitian, the expressions (Q̂ R̂ + R̂ Q̂) and i(Q̂ R̂ − R̂ Q̂) are
Hermitian. We have, using (4.12) and the fact that Q̂ and R̂ are Hermitian,∫

f Q̂ R̂g dτ =
∫

(R̂g)Q̂∗ f dτ

=
∫

(Q̂∗ f )R̂g dτ

=
∫

g R̂∗ Q̂∗ f dτ (4.44)

Similarly ∫
f R̂ Q̂g dτ =

∫
gQ̂∗ R̂∗ f dτ (4.45)

Thus, adding (4.44) and (4.45)∫
f (Q̂ R̂ + R̂ Q̂)g dτ =

∫
g(Q̂ R̂ + R̂ Q̂)∗ f dτ (4.46)
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while, subtracting (4.44) and (4.45) and multiplying by i ,∫
f [i(Q̂ R̂ − R̂ Q̂]g dτ =

∫
g[i(Q̂ R̂ − R̂ Q̂)]∗ f dτ (4.47)

which proves these statements. We note that it is an obvious corollary of this
that if Q̂ is Hermitian so is Q̂2. Thus, for example, the Hermitian property of
the kinetic energy operator, T̂ = P̂2/2m, follows directly from the fact that P̂ is
Hermitian.

Consider now a series of measurements of the quantity represented by the
operator Q̂ on a system whose wavefunction is ψ before each measurement. The
average result is equal to the expectation value 〈Q̂〉 which was shown earlier
(4.39) to be given by

〈Q〉 =
∫

ψ∗ Q̂ψ dτ

We can also estimate the average amount by which the result of such a
measurement would be expected to deviate from this expectation value: the
operator representing this ‘uncertainty’ is clearly (Q̂ −〈Q̂〉), so if the root-mean-
square deviation from the mean is �q , we have

�q2 =
∫

ψ∗(Q̂ − 〈Q̂〉)2ψ dτ

=
∫

ψ∗ Q̂′ Q̂′ψ dτ

where Q̂′ is defined as (Q̂−〈Q̂〉). Clearly if Q̂ is Hermitian, so is Q̂′ and therefore

�q2 =
∫

(Q̂′ψ)(Q̂′∗ψ∗)

=
∫
|Q̂′ψ|2 dτ (4.48)

In the same way, if we had carried out the measurement represented by the
operator R̂ on the same system, the expectation value would have been 〈R̂〉 and
the root-mean-square deviation �r where

�r2 =
∫
|R̂′ψ|2 dτ

and
R̂′ = R̂ − 〈R̂〉

Now consider the product

�q2�r2 =
∫
|Q̂′ψ|2 dτ

∫
|R′ψ|2 dτ

>

∣∣∣ ∫ (Q̂′∗ψ∗)(R̂′ψ) dτ
∣∣∣2

(4.49)
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where the last step was obtained using a mathematical relationship known as
Schwarz’s inequality which states that∫

| f |2 dτ
∫
|g|2 dτ >

∣∣∣∣
∫

f ∗g dτ

∣∣∣∣
2

where f and g are any integrable functions of r.1 Now, again using the Hermitian
property of Q̂′,∫

(Q̂′∗ψ∗)(R̂′ψ) dτ =
∫

ψ∗ Q̂′ R̂′ψ dτ

= 1
2

∫
ψ∗(Q̂′ R̂′ − R̂′ Q̂′)ψ dτ

+ 1
2

∫
ψ∗(Q̂′ R̂′ + R̂′ Q̂′)ψ dτ (4.50)

It was previously shown that if Q̂′ and R̂′ are Hermitian operators so are
(Q̂′ R̂′ + R̂′ Q̂′) and i(Q̂′ R̂′ − R̂′ Q̂′) so the expectation values of the latter two
operators must be real numbers. It follows that the first term on the right-hand
side of (4.50) is purely imaginary and the second term is purely real, so the right-
hand side of (4.49) can be expressed as the sum of squares of the two terms on
the right-hand side of (4.50) and we get

�q2�r2 >
1

4

(∣∣∣∣
∫

ψ∗[Q̂′, R̂′]ψ dτ

∣∣∣∣
2

+
∣∣∣∣
∫

ψ∗(Q̂′ R̂′ + R̂′ Q̂′)ψ dτ

∣∣∣∣
2)

>
1

4

∣∣∣∣
∫

ψ∗[Q̂′, R̂′]ψ dτ

∣∣∣∣
2

Now it follows immediately from the definitions of Q̂′ and R̂′ that [Q̂′, R̂′] =
[Q̂, R̂] so we have

�q�r >
1

2

∣∣∣∣
∫

ψ∗[Q̂, R̂]ψ dτ

∣∣∣∣
1 To prove Schwarz’s inequality, consider the expression∫ ∣∣∣∣ f

(∫
|g|2 dτ

)
− g

(∫
f g∗ dτ

)∣∣∣∣2 dτ

This expression must be greater than or equal to zero because the integrand is nowhere negative by
definition. We can rewrite the integrand as a product of a function and its complex conjugate and get∫ [

f ∗
(∫

|g|2 dτ

)
− g∗

(∫
f ∗g dτ

)][
f

(∫
|g|2 dτ

)
− g

(∫
f g∗ dτ

)]
dτ > 0

When we multiply out the product of the two square brackets, two terms are equal and opposite and
the others have a common factor,

∫ |g|2 dτ that can be cancelled out. We then get∫
| f |2 dτ

∫
|g|2 dτ −

∣∣∣∣
∫

f ∗g dτ

∣∣∣∣2 > 0

which is Schwarz’s inequality.
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That is
�q�r > 1

2 |〈[Q̂, R̂]〉| (4.51)

so, if we know the commutator of two operators, we can calculate the minimum
value of the product of the uncertainties associated with series of measurements
represented by each of them, on a system whose wavefunction is ψ before each
measurement. This is known as the generalized uncertainty principle. In the
case where Q̂ and R̂ are the operators representing a position coordinate and a
corresponding component of momentum, we have [X̂ , P̂x ] = i} and therefore

�x�px >
1
2} (4.52)

which is the Heisenberg uncertainty principle referred to in chapter 1. We
note that in this particular case the uncertainty product is independent of the
wavefunction of the system.

It is tempting to deduce from (4.51) that, if two operators commute, the
product of their uncertainties must be zero. However, this is not, in general, true
because the uncertainties depend on the form of the initial wavefunction. Thus,
for example, predictions of the values of the x and y coordinates of a particle
initially in the ground state of the hydrogen atom both have uncertainties even
though their operators commute. Nevertheless, we saw earlier that commuting
operators represent compatible measurements, so in the particular case where the
initial state is an eigenfunction of one of them, both uncertainties will be zero.

Thus we have shown that the uncertainty principle follows directly from
the fundamental postulates of quantum mechanics. However, it is important
to understand the nature of the ‘uncertainties’ �q and �r . First, these are
not experimental errors associated with any particular measurement, but refer
to the root-mean-square deviations or ‘average spread’ of a set of repeated
measurements. This is the most we can predict about the outcome of the
experiments, so we can look on the uncertainties as ‘errors in prediction’. Second,
the measurements represented by Q̂ and R̂ are obtained in separate sets of
experiments, starting with the same wavefunction in each case. There is nothing
in this to justify the popular notion that uncertainty arises because measuring one
quantity ‘disturbs’ the system so as to introduce errors into the measurement of
the other. These points should become clearer in the following example.

Example 4.1 Single-slit diffraction Consider a beam of particles of definite
momentum p travelling parallel to the z axis (i.e. the wavefunction is a plane
wave whose wavevector has components 0, 0, p/}) towards a slit of width a
in the x direction where the origin of coordinates is the centre of the slit (see
figure 4.2). We consider how we can measure the x coordinate of the particle
position and the x component of momentum after the particles pass through the
slit. That is, the wavefunctionψ in this treatment corresponds to the wavefunction
of a particle emerging from the slit. We first consider a set of experiments carried
out to measure x , by placing a photographic film immediately behind the slit and
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Figure 4.2. Single-slit diffraction. The lower slit ensures that particles reaching the upper
slit are travelling parallel to the z axis. The graph at the top shows the intensity of the
diffraction pattern as a function of θ in the case where λ = a/3.

allowing a large number of particles to pass through. If the beam is uniform across
the slit, any particle has equal probability of passing through any part of the slit
and it follows that the expectation value of its x coordinate will be zero with a
standard deviation �x of about a/4. (A direct application of (4.48) shows that its
value is actually a/2

√
3.)

We measure the momentum uncertainty by a separate set of experiments in
which we allow the particles to pass well beyond the slit before detecting them
on the screen. Here, the wavefunction has the form of the well-known single-
slit diffraction pattern, the first minimum of which occurs at an angle θ1 where
sin θ1 = λ/a = 2π}/ap. Thus most of the particles passing through the slit
travel in a direction within the central maximum of the diffraction pattern, so
we can predict that measurements of the x component of the momentum of the
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particles will have an expectation value of zero with a spread �px approximately
equal to p sin θ1. Hence

�x�px � a

2
p2π

}

ap
= π} >

1

2
} (4.53)

in agreement with the uncertainty principle.
We should note a number of points about this example. First, when we

record the diffraction pattern we can measure the x component of the particle
momentum as precisely as we like by noting the point at which it blackens the
film (any error in θ due to the size of the slit or to that of the blackened area can
be made indefinitely small by placing the film far enough behind the slit). This
is perfectly consistent with the uncertainty principle because the uncertainty �px

represents our inability to predict the outcome of an experimental measurement
(we cannot tell in advance where on the film the particle will arrive) and not the
accuracy of the measurement actually made. The second point to note is that the
uncertainty principle is about the predictions of the results of two separate sets of
experiments. Sometimes one of these is implied rather than performed, because
the expected results are so obvious: in the present example, the measurement of x
comes into this category. A mistake that is sometimes made is to say that passing
the particle through the slit constitutes a ‘measurement of position with error �x’,
following which its momentum ‘is measured with error �px’. However, unless
the position of the particle has been recorded, it has not been measured.

Finally, we return to the example of the Heisenberg microscope referred
to in chapter 1 (p. 12). As a result of many photons having been scattered
by the electron into the microscope we obtain an image of the electron that is
‘blurred’ by an amount �x . From the earlier discussion in this section, we see
that what this means is that, if we were to follow up this measurement by another
which determined x precisely and repeat the whole process a number of times,
the spread in the values of x would be �x . We also derived the uncertainty
in the x component of the electron momentum, �px , and we found that these
two uncertainties are related by the uncertainty principle as expected. This is
correct, but to actually measure �px we would have to conduct a separate series
of experiments in which we recorded the particles just after they emerged from
the lens. Once again two sets of experiments are required to measure the spread
in the results for the two variables.

4.6 The time dependence of the wavefunction

Nearly all our discussion so far has related to the properties of wavefunctions
immediately after measurement—i.e., to the eigenfunctions of operators
representing physical quantities—and we have given very little consideration to
the evolution of the wavefunction in time. However, at the beginning of chapter 2
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we set up the time-dependent Schrödinger equation which we generalized to three
dimensions in chapter 3 as

− }
2

2m
∇2� + V (r, t)� = i}

∂�

∂ t
(4.54)

In the notation of the present chapter this becomes

Ĥ� = i}
∂�

∂ t
(4.55)

where Ĥ is the Hamiltonian operator for the system. In the earlier chapters we
separated off the time dependence and obtained the time-independent Schrödinger
equation, which we have since recognized as the energy eigenvalue equation. We
shall now postulate that the time-dependent Schrödinger equation (4.55) must
always be satisfied even when the energy of the system is not known.

Postulate 4.5 Between measurements, the development of the wavefunction with
time is governed by the time-dependent Schrödinger equation.

Note the phrase ‘between measurements’. We saw earlier (postulate 4.2) that
measurement generally leads to ‘collapse’ of the wavefunction into one of the
eigenfunctions of the measurement operator. This collapse is not a consequence
of the Schrödinger equation, but is a separate type of time dependence associated
with the act of measurement. The fact that quantum mechanics predicts two
different time dependencies for the wavefunction underlies what is known as the
quantum measurement ‘problem’, which will be addressed in the last chapter.

We shall return to a more detailed discussion of the Schrödinger time
dependence in chapter 8, but in the meantime we discuss only the particular
case where Ĥ is not itself a function of time; classically this corresponds to
a closed system in which energy is conserved. If the energy eigenfunctions of
the system obtained by solving the energy eigenvalue equation (4.2) are un then,
by completeness, the wavefunction at any time t can be expressed as a linear
combination of the un:

ψ(r, t) =
∑

n

an(t)un(r) (4.56)

where the coefficients an are, in general, functions of time. Substituting (4.56)
into (4.55) we get

i}
∑

n

dan

dt
un =

∑
n

an Ĥun

=
∑

n

an Enun

Thus ∑
n

(
i}

dan

dt
− an En

)
un = 0 (4.57)
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Equation (4.57) must be true at all points in space so the terms in brackets must
vanish leading to

i}
dan

dt
= an En

that is,
an(t) = an(0) exp(−i Ent/}) (4.58)

where an(0) is the value of an at some initial time t = 0. Hence from (4.56) and
(4.58) a general solution to the time-dependent Schrödinger equation is

�(r, t) =
∑

n

an(0)un(r) exp(−i Ent/}) (4.59)

Now suppose we carry out a measurement of the energy of the system at
time t = 0. From the earlier postulates we should obtain a result equal to one of
the energy eigenvalues, say Em . Moreover, the wavefunction immediately after
the measurement will be the corresponding eigenfunction um . This is equivalent
to saying that at t = 0, am(0) = 1 and an(0) = 0, n �= m. In this case (4.59)
becomes

�(r, t) = um exp(−i Emt/}) (4.60)

which was the particular form of solution used in chapters 2 and 3. We notice
that the right-hand side of (4.60) differs from um only by a phase factor, so
� is an eigenfunction of Ĥ at all times (remember Ĥ is assumed to be time
independent). Thus any later measurement of the energy will again yield the value
Em and we conclude that, in this sense, energy is conserved in such a quantum
system, as it would be classically. Moreover, the value of any quantity that can
be measured compatibly with the energy and whose operator therefore commutes
with Ĥ (e.g., the linear momentum of a free particle) will also be conserved.
This result emphasizes the great importance of the time-independent Schrödinger
equation (the energy eigenvalue equation) whose solutions we discussed in some
detail in earlier chapters. Much of quantum mechanics concerns the properties of
the energy eigenstates of systems whose Hamiltonians are independent of time—
often referred to as ‘stationary states’ because of the properties just described.
However, many experimental measurements (e.g. atomic spectra) refer to systems
which change from one nearly stationary state to another under the influence of
a time-dependent potential. We shall discuss the quantum mechanics of such
changes in chapter 8 where we shall see that, in many cases, the time-dependent
potential can be considered as causing small ‘perturbations’ on the stationary
states of the system.

4.7 Degeneracy

The previous sections of this chapter apply to cases where the eigenfunctions of
the operators representing physical measurements are non-degenerate. That is,
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we have assumed that if
Q̂φn = qnφn

then
qn �= qm for all n �= m (4.61)

However, degeneracy is in fact quite a common feature of physical systems,
and indeed we saw in chapter 3 that it was a necessary consequence of symmetry
in a number of three-dimensional examples. In the present section, therefore,
we shall extend our discussion of the formal properties of quantum mechanics to
the degenerate case. There have been two occasions in which we have explicitly
assumed that systems were non-degenerate: first when discussing orthornormality
and second when discussing compatible measurements. We shall now extend our
discussion of both these points to include degeneracy.

One property that is unique to the degenerate case is that any linear
combination of degenerate eigenfunctions (φn) with the same eigenvalue (q) is
also an eigenfunction with that eigenvalue. This follows directly from substitution
into (4.61)

Q̂
∑

n

cnφn =
∑

n

cn Q̂φn

= q
∑

n

cnφn (4.62)

Turning now to orthogonality, the proof that eigenfunctions must be
orthogonal no longer holds, but we can show that it is always possible to construct
a set of orthogonal eigenfunctions from a set of non-orthogonal eigenfunctions,
φn .

Consider the function φ′2 where

φ′2 = S12φ1 − φ2 and S12 =
∫

φ∗1φ2 dτ

then ∫
φ∗1φ′2 dτ = S12

∫
φ∗1φ1 dτ −

∫
φ∗1φ2 dτ

= S12 − S12 = 0

Thus φ′2 is orthogonal to φ1 and a third function orthogonal to these two can be
similarly shown to be φ′3 where

φ′3 = S13φ1 + S23φ
′
2 − φ3

S13 is similar to S12, and

S23 =
∫

φ′∗2 φ3 dτ

/∫
|φ′2|2 dτ
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This procedure (known as Schmidt orthogonalization) can be continued until a
complete orthogonal set of degenerate eigenfunctions has been set up. Thus all
the results in this chapter which depend on orthogonality can be extended to the
degenerate case, provided it is assumed that such an orthogonal set has first been
constructed. Throughout the rest of this book, we shall assume that this has
already been done and that all sets of eigenfunctions we encounter are orthogonal.

Turning now to a discussion of compatible measurements, the proof of
the theorem that the operators representing compatible measurements commute
is clearly unaffected by the presence of degeneracy, but the converse (that
measurements represented by commuting operators are compatible) requires
modification. Consider the case where φ1 and φ2 are two degenerate
eigenfunctions (eigenvalue q) of the operator Q̂ which commutes with the
operator R̂. Assume for the moment that there are only two linearly independent
eigenfunctions with this eigenvalue. Then

Q̂ R̂φ1 = R̂ Q̂φ1 = q R̂φ1 (4.63)

so (R̂φ1) is also an eigenfunction of Q̂ with eigenvalue q , and it must therefore
be a linear combination of φ1 and φ2. That is,

R̂φ1 = aφ1 + bφ2 (4.64)

where a and b are constants. An identical argument, replacing φ1 with φ2 in
(4.63), leads to

R̂φ2 = cφ1 + dφ2 (4.65)

where c and d are constants. We shall now show that particular linear
combinations of φ1 and φ2 that are eigenfunctions of R̂ exist. Let one of these be
φ′ = Aφ1 + Bφ2 and let its eigenvalue be r , then

R̂φ′ ≡ AR̂φ1 + B R̂φ2 ≡ Aaφ1 + Abφ2 + Bcφ1 + Bdφ2

= rφ′ ≡ r Aφ1 + r Bφ2 (4.66)

Equating coefficients of φ1 and φ2 in (4.66) we get

(a − r)A + cB = 0

b A+ (d − r)B = 0

}
(4.67)

The equations (4.67) have solutions only if the determinant of the coefficients
of A and B vanishes, leading to two possible values of r . In general these
will not be equal, so the eigenfunctions of R̂ need not be degenerate. This
result can readily be extended to the case of an arbitrary number of degenerate
functions. We therefore conclude that, although all possible forms of the
degenerate eigenfunctions of one operator are not necessarily eigenfunctions of
the other, a set of eigenfunctions that are common to both operators can always
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be chosen. Once this has been done, compatibility has the same meaning as it did
in the non-degenerate case.

Finally we consider the implications of the previous discussion for the
quantum theory of measurement. Following a measurement represented by the
operator Q̂, which produces the result q , the system will have a wavefunction
equivalent to one of the set of degenerate eigenfunctions that correspond to this
eigenvalue. However, this need not be an eigenfunction of the operator R̂ and
the exact result of a measurement represented by this operator is not predictable
even though Q̂ and R̂ commute. Nevertheless, the only possible results are those
calculable in the manner described earlier, and a subsequent measurement of the
quantity represented by R̂ will leave q unchanged and result in the wavefunction
being equivalent to one of the set of common eigenfunctions. The results of
further measurements represented by Q̂ or R̂ will then be completely predictable.

As an example of this, consider the energy eigenfunctions of the hydrogen
atom discussed in chapter 3. A measurement of the energy that showed the atom
to have principal quantum number n = 2 would result in the atom being in one
of four degenerate states (l = 0, m = 0; l = 1, m = 0 or ±1) or in some linear
combination of them. A subsequent measurement of the total angular momentum
must yield a result

√
l(l + 1)} where l is either zero or one, but which of these

is unpredictable. Following this, if l has been found to be equal to one, say,
the value of m will be similarly unpredictable unless the z component of angular
momentum is also measured. Each of these measurements leaves the values of the
previously measured quantities unchanged and, once all three measurements have
been made, the wavefunction of the system is completely specified and the results
of further measurements of any of these quantities are completely predictable.

4.8 The harmonic oscillator again

We discussed the harmonic oscillator energy states in chapter 2 where we showed
that these were quantized with values (n+ 1

2 )}ωc, ωc being the classical frequency
of the oscillator and n an integer > 0. We return to this problem as an
example of the application of operator methods, which will lead to the same
results. The techniques used here are very similar to those that will be used
to analyse the properties of the angular momentum operators (chapter 5) and
similar techniques underlie much of quantum field theory, which is touched on
in chapter 13.

The energy of a harmonic oscillator is represented by the Hamiltonian
operator

Ĥ = P̂2

2m
+ 1

2 mω2
c X̂2 (4.68)

We can simplify the algebra in a manner similar to that used in chapter 2 by using
dimensionless variables such that x is measured in units of (}/mωc)

1/2, p in units
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of (m}ωc)
1/2 and energy in units of }ωc so that (4.68) becomes

Ĥ = 1
2 (P̂2 + X̂2) (4.69)

We define two new operators in terms of X̂ and P̂ :

R̂+ = (P̂ + i X̂)

R̂− = (P̂ − i X̂) (4.70)

In our units the commutation relation (4.41) becomes [P̂, X̂ ] = −i . Using this
with (4.70), we get

R̂+ R̂− = (P̂2 + X̂2 − i [P̂, X̂ ]) = 2Ĥ − 1 (4.71)

and
R̂−R+ = 2Ĥ + 1 (4.72)

so that
Ĥ = 1

2 (R̂+ R̂− + 1) = 1
2 (R̂− R̂+ − 1) (4.73)

Using (4.73), we get

[R̂+, Ĥ ] = R̂+ 1
2 (R̂− R̂+ − 1)− 1

2 (R̂+ R̂− + 1)R̂+
= −R+ (4.74)

Similarly
[R̂−, Ĥ ] = R̂− (4.75)

Now, from (4.74)

Ĥ R̂+un = R̂+ Ĥun + R̂+un

= (En + 1)(R̂+un) (4.76)

where un is an energy eigenfunction with eigenvalue En . Similarly, using (4.75)
we get

Ĥ R̂−un = (En − 1)(R̂−un) (4.77)

Thus (R̂+un) and (R̂−un) are eigenfunctions of Ĥ with eigenvalues (En + 1)
and (En − 1) respectively. It follows that the operators R̂+ and R̂− move us
up and down a ‘ladder’ of eigenvalues. As a result R̂+ and R̂− are known as
‘raising’ and ‘lowering’ operators, or sometimes as ‘creation’ and ‘annihilation’
operators because they create or annihilate quanta of energy. We also know from
the form of the Hamiltonian that all energy levels must be positive. So, if u0 is
the eigenfunction corresponding to the minimum value of the energy, (4.77) can
be satisfied only if R̂−u0 = 0; hence, using (4.71)

0 = R̂+ R̂−u0 = (2Ĥ − 1)u0 = (2E0 − 1)u0 (4.78)
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Hence E0 = 1
2 and it follows that the energy levels are En = (n + 1

2 ) in
dimensionless units or

En = (n + 1
2 )}ωc (4.79)

agreeing with the result in chapter 2.
This is an example of a ‘representation-free’ derivation, in which the energy

eigenvalues have been obtained without using an explicit form of the position and
momentum operators.

The form of the eigenfunctions can also be shown to be the same as that
deduced in chapter 2. After making the substitutions X̂ = x , and P̂ = −i∂/∂x ,
the expression R̂−u0 = 0 becomes

∂u0

∂x
+ xu0 = 0 (4.80)

whose solution is
u0 = A exp(−x2/2) (4.81)

where A is a normalizing constant, which again agrees with chapter 2. The
wavefunctions of the other states can be obtained by successively operating on
u0 by R̂+, again expressed in terms of x and −i∂/∂x .

4.9 The measurement of momentum by Compton scattering

We close this chapter with an example of a real physical measurement that
illustrates many of the principles discussed here. This is the measurement of the
momentum of electrons by Compton scattering of x-rays. We discussed Compton
scattering in chapter 1 where we obtained evidence for the existence of photons
of energy }ω and momentum }k, where ω and k are the angular frequency and
wavevector of the x-rays. However, at that stage we assumed that the electron
was at rest before the scattering event; we will now lift this restriction and show
how Compton scattering can be used to obtain information about the momentum
of the scattering electron.

We consider first the case of a free electron whose momentum before and
after the photon is scattered has the values p and p′ respectively and treat this
situation, using the classical laws governing the collisions of particles, as we did
in chapter 1. Measurement of the wavelength of the incident and scattered x-rays
(e.g. by Bragg diffraction from a crystal of known lattice spacing) and knowledge
of the direction of the incoming and outgoing photon lead to values for the change
in momentum (δp) and the change in energy (δE) of the photon in the collision.
Using conservation of energy and momentum we have

δp = p− p′ (4.82)

and
δE = p2/2m − p′2/2m (4.83)
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Squaring (4.82) we get

p′2 = p2 + δp2 − 2p · δp (4.84)

while from (4.83) we have

p′2 = p2 − 2mδE (4.85)

Equating the right-hand sides of (4.84) and (4.85) leads to

2p · δp = δp2 + 2mδE (4.86)

Thus our knowledge of δp and δE have led directly to a measurement of the
component of p in the direction of δp and a similar component of p′ is readily
derived from (4.86) and (4.82). We now analyse this measurement from the point
of view of quantum mechanics. We first note again that for a free particle (V = 0)
the momentum operator (−i}∇) commutes with the Hamiltonian (−}2∇2/2m)

so these are compatible measurements and the momentum eigenfunctions are
therefore stationary states of the system. The experiment then implies that the
electron was in a state of momentum p (wavefunction exp(ip · r/})) before
the measurement and in another stationary state of momentum p′ (wavefunction
exp(ip′ ·r/})) afterwards. The outcome of the experiment is therefore completely
predictable and if it is repeated with the same starting conditions, the same result
will certainly be obtained for the component of p′ in the direction δp.

The situation becomes more complicated, but at the same time more
illustrative of the quantum theory of measurement, if the electron is bound to an
atom before the scattering process takes place. We shall assume that a previous
measurement of the energy of the atom (achieved perhaps by observing photons
emitted from it) has shown it to be in its ground state which is, of course, a
stationary state of the system. We now consider the dynamics of the scattering
process. The conservation of energy and momentum is complicated by the
presence of the atomic nucleus and, unless the atom is ionized in the collision,
the momentum transfer will be to the atom as a whole and the experiment will
give little or no information about the momentum of the individual electron.
Even if the collision ionizes the atom, equation (4.86) will provide an accurate
measurement of the component of the electron momentum only if the ionization
energy is small enough to be ignored compared with the energy transfer, δE : that
is if the electron is knocked ‘cleanly’ out of the atom. Thus in order to measure
accurately the momentum of an electron in an atom, we must make the electron
effectively free in the process. Looking at this experiment from the point of view
of quantum mechanics we first note that, if the electron is bound to the atom,
the momentum operator does not commute with the Hamiltonian operator so the
initial state cannot be a momentum eigenstate. As we know the change in photon
energy, we can use conservation of energy to see that the atom must be in an
energy eigenstate after the collision, but if the momentum has been measured
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it follows from postulate 4.2 that the electron is also in a momentum eigenstate
after the measurement. The only way both these conditions can be fulfilled is if
the electron is effectively free after the collision, which is just the condition we
derived earlier as necessary for an accurate momentum measurement.

We have seen, therefore, that an accurate measurement of the momentum of
an electron in an atom is possible provided the electron is placed in a momentum
eigenstate as a result of the experiment. What is not possible on the basis of
the postulates of quantum mechanics is a prediction of the precise result of
such an experiment. Postulate 4.4, however, tells us how to obtain the relative
probabilities of the different possible outcomes and we complete the discussion
by applying this to the present example. We assume the atom is hydrogen and
that it is initially in its ground state. Then its wavefunction is, from chapter 3,

u(r) = (πa3
0)
−1/2 exp(−r/a0) (4.87)

The probability of obtaining a result for p in the region dpx, dpy, dpz in
the vicinity of p = }k is |a(k)|2, where a(k) is given by the three-dimensional
equivalent of (4.37):

a(k) =
(

1

8π3

)1/2 ∫
u(r) exp(−ik · r) dτ

= (8π4a3
0)
−1/2

∫ 2π

0

∫ π

0

∫ ∞

0
exp(−r/a0 − ikr cos θ)r2 dr sin θ dθ dφ

(4.88)

where we have expressed the volume integral in spherical polar coordinates with
the direction of k as the polar axis. The integrals over θ and φ are readily evaluated
after making the substitution x = cos θ leading to

f (k) = 2(2π2a3
0)
−1/2

∫ ∞

0
k−1 sin(kr) exp(−r/a0)r dr

The integral over r can be evaluated by successive integrations by parts and we
obtain

f (k) = 2(2a3
0)

1/2/[π(1+ a2
0k2)2] (4.89)

As expected, therefore, the momentum probability distribution for an electron in
the ground state of the hydrogen atom is spherically symmetric in momentum
space, corresponding with the spherically symmetric position probability
distribution obtained by squaring (4.87). Finally we note that the Compton
scattering experiment measures one component of momentum only. Calling this
the z component, the probability that it will be found to have a value between
}kz and }(kz + dkz) while the other components may adopt any values will be
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Figure 4.3. A comparison of the theoretical and experimental intensities of Compton
scattering from helium. The continuous line represents the momentum probability
distribution calculated in the manner described in the text and the points represent
measured intensities—after J. W. M. Dumond and H. A. Kirkpatrick, Physical Review
vol. 52, pp. 419–436, 1937.

P(kz)dkz where

P(kz) =
∫ ∫

| f (k)|2 dkx dky

= (8a3
0/π

2)

∫ ∞

−∞

∫ ∞

−∞
(1+ a2

0k2
x + a2

0k2
y + a2

0k2
z )
−4 dkx dky

The relevant integrals can be looked up in tables giving

P(kz) = 2a0/[π(1+ a2
0k2

z )
2] (4.90)

We note that the product of the widths of the momentum distribution (δpz �
}/a0) and the position distribution (δz � a0) is approximately equal to } in
agreement with the uncertainty principle.

We have discussed this example in some detail because it illustrates several
of the main features of the basic postulates of quantum mechanics. In particular
we have seen how an exact measurement of a physical quantity (in this case the
momentum of an electron) results in the system being in an eigenstate of the
operator representing the measurement immediately after the measurement has
been completed. We have also seen that knowledge of the wavefunction of the
system before the measurement does not generally provide a precise prediction of
the result, but only of the relative probabilities of the various outcomes.

Another reason for discussing this particular example is that Compton
scattering represents a measurement which can be actually carried out.
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Unfortunately, such experiments on monatomic hydrogen are impractical, but
figure 4.3 shows the momentum component probability distribution in helium,
calculated in a similar manner, and also the results of an early Compton
scattering experiment, each experimental point representing the number of times
the component of momentum of an electron was measured to be in the region
of that value. We see that there is excellent agreement between the frequency
distribution and the calculated probability distribution, but we note once more that
quantum mechanics can only make this statistical prediction and that the values
obtained in individual measurements of electron momentum are unpredictable.

Problems

4.1 Show that the operators Q̂, Q̂2, Q̂3, etc., are all compatible. Hence show that any component
of the momentum of a particle can always be measured compatibly with the kinetic energy, but that
the momentum and total energy can be measured compatibly only if the potential energy is constant
everywhere.

4.2 A particle moves in one dimension subject to a potential that is zero in the region −a 6 x 6 a
and infinite elsewhere. At a certain time its wavefunction is

ψ = (5a)−1/2 cos(π x/2a)+ 2(5a)−1/2 sin(π x/a)

What are the possible results of the measurement of the energy of this system and what are their
relative probabilities? What are the possible forms of the wavefunction immediately after such a
measurement? If the energy is immediately remeasured, what will now be the relative probabilities
of the possible outcomes? (The energy eigenvalues and eigenfunctions of this system are given in
section 2.4.)

4.3 The energy of the particle in problem 4.2 is measured and a result equal to the lowest energy
eigenvalue is obtained. Show that the probability of a subsequent measurement of the electron
momentum yielding a result between }k and }(k + dk) is equal to P(k) dk where

P(k) = π

2a3

cos2 ka

(π2/4a2 − k2)2

4.4 Show that if the particle in problem 4.2 had been in a highly excited energy eigenstate of
eigenvalue E , a measurement of the momentum would almost certainly have produced a value equal
to ±(2m E)1/2. Compare this result with the predictions of classical mechanics for this problem.
4.5 A particle is observed to be in the lowest energy state of an infinite-sided well. The width of
the well is (somehow) expanded to double its size so quickly that the wavefunction does not change
during this process; the expansion takes place symmetrically so that the centre of the well does not
move. The energy of the particle is measured again. Calculate the probabilities that it will be found in
(i) the ground state, (ii) the first excited state and (iii) the second excited state of the expanded well.

4.6 Calculate the expectation value of (i) x , (ii) x2, (iii) p, and (iv) p2 for a particle known to be in
the lowest energy state of a one-dimensional harmonic oscillator potential before these measurements
are performed. Hence show that the expectation value of the total energy of the particle equals the
ground-state eigenvalue and that the product of the root-mean-square deviations of x and p from their
respective means has the minimum value allowed by the uncertainty principle.

4.7 Calculate the expectation values of the following quantities for an electron known to be in the
ground state of the hydrogen atom before the measurements are performed: (i) the distance r of the
electron from the nucleus, (ii) r2, (iii) the potential energy, (iv) the kinetic energy. Show that the sum
of (iii) and (iv) equals the total energy.

4.8 An operator P̂ , known as the parity operator, is defined so that, in one dimension, P̂ f (x) = f (−x)
where f is any well-behaved function of x . Assuming that P̂ is real, prove that P̂ is Hermitian.
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Show that the eigenvalues of P̂ are ±1 and that any function φ(x) that has definite parity—i.e. if
φ(x) = ±φ(−x)—is an eigenfunction of P̂ .

4.9 Show that, if H is the Hamiltonian operator representing the total energy of a system where
the potential energy is centrosymmetric and if P̂ is the parity operator defined in problem 4.8, then
[P̂, Ĥ ] = 0. Hence show that in the non-degenerate case, the energy eigenfunctions of such a system
always have definite parity. What restrictions, if any, are placed on the eigenfunctions in the similar,
but degenerate, case?

4.10 Generalize the results given in problems 4.8 and 4.9 to the three-dimensional case and confirm
that they apply to the energy eigenfunctions of a particle in a spherically symmetric potential obtained
in chapter 3.

4.11 X-rays of wavelength 1.00 × 10−10 m are incident on a target containing free electrons, and
a Compton scattered x-ray photon of wavelength 1.02 × 10−10 m is detected at an angle of 90◦ to
the incident direction. Obtain as much information as possible about the momentum of the scattering
electron before and after the scattering process.



Chapter 5

Angular momentum I

Angular momentum is a very important and revealing property of many physical
systems. In classical mechanics the principle of conservation of angular
momentum is a powerful aid to the solution of such problems as the orbits of
planets and satellites and the behaviour of gyroscopes and tops. The role of
angular momentum in quantum mechanics is probably even more important and
this will be the subject of the present chapter and the next. We shall find that the
operators representing the components of angular momentum do not commute
with each other, although they all commute with the operator representing the
total angular momentum. It follows that no pair of these components can be
measured compatibly and we shall therefore look for a set of eigenfunctions
that are common to the operators representing the total angular momentum and
one of its components. We shall find that the angular momentum eigenvalues
always form a discrete set and that, in the case of a central field, the operators
commute with the Hamiltonian, implying that the total angular momentum and
one component can be measured compatibly with the energy in this case, so that
their values, once measured, remain constant in time. Consideration of angular
momentum will also enable us to make predictions about the behaviour of atoms
in magnetic fields, and we shall find that these are in agreement with experiment
only if we assume that the electron (along with other fundamental particles)
has an intrinsic ‘spin’ angular momentum in addition to the ‘orbital’ angular
momentum associated with its motion; the interaction between spin and orbital
angular moments leads to detailed features of the atomic spectra which are known
as ‘fine structure’. We shall also use the measurement of angular momentum to
illustrate the quantum theory of measurement discussed in the previous chapter.

Angular momentum is therefore an important subject which deserves and
requires detailed consideration. In the rest of this chapter we shall consider the
properties of the angular-momentum operators and obtain expressions for their
eigenvalues in the case of spin as well as orbital angular momentum, while in
the next chapter we shall show that the angular-momentum components can be
usefully represented by matrices rather than differential operators, and discuss
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how this matrix representation can be used to describe the fine structure of atomic
spectra and to illustrate the quantum theory of measurement.

5.1 The angular-momentum operators

The classical expression for the angular momentum l of a particle whose position
and momentum are r and p respectively is

l = r× p (5.1)

Using postulate 4.3, we replace r and p by the operators R̂ and P̂. The quantum-
mechanical operator, L̂, representing angular momentum is then

L̂ = R̂× P̂ (5.2)

where R̂ and P̂ are the operators representing position and momentum. The
operators representing the Cartesian components of angular momentum are
therefore

L̂ x = Ŷ P̂z − Ẑ P̂y L̂ y = Ẑ P̂x − X̂ P̂z L̂z = X̂ P̂y − Ŷ P̂x (5.3)

and that representing the square of the magnitude of the total angular momentum
is

L̂2 = L̂2
x + L̂2

y + L̂2
z (5.4)

We now investigate whether these operators represent quantities that are
compatible in the sense discussed in the previous chapter. To do this, we check
whether the operators L̂ x , L̂ y , L̂z , and L̂2 commute when taken in pairs. Using
(5.3), we get

[L̂ x , L̂ y] = L̂ x L̂ y − L̂ y L̂x

= (Ŷ P̂z − Ẑ P̂y)(Ẑ P̂x − X̂ P̂z)− (Ẑ P̂x − X̂ P̂z)(Ŷ P̂z − Ẑ P̂y)

= Ŷ P̂z Ẑ P̂x − Ŷ P̂z X̂ P̂z − Ẑ P̂y Ẑ P̂x + Ẑ P̂y X̂ P̂z

− Ẑ P̂x Ŷ P̂z + Ẑ P̂x Ẑ P̂y + X̂ P̂z Ŷ P̂z − X̂ P̂z Ẑ P̂y (5.5)

The corresponding terms in the last two lines of (5.5) contain the same operators,
but in a different order, which is important only for those operators that do
not commute. Remembering the commutation relations for the components of
position and momentum (4.42), the only non-commuting operators in (5.5) are P̂z

and Ẑ . We can therefore cancel the second and third terms in the second last line
with the corresponding terms in the last line, and rearrange the others to give

[L̂ x , L̂ y] = Ŷ P̂x (P̂z Ẑ − Ẑ P̂z)+ X̂ P̂y(Ẑ P̂z − P̂z Ẑ)

= (X̂ P̂y − Ŷ P̂x )(Ẑ P̂z − P̂z Ẑ)

= i}(X̂ P̂y − Ŷ P̂x)

= i}L̂z (5.6)
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using (5.3). [L̂ y, L̂z] and [L̂z, L̂ x ] can be obtained similarly and we have

[L̂ x , L̂ y] = i}L̂z (5.7)

[L̂ y, L̂z ] = i}L̂ x (5.8)

[L̂z, L̂ x ] = i}L̂ y (5.9)

We can now complete our calculation of the commutator brackets by
considering those involving L̂2. From (5.4)

[L̂2, L̂z ] = [L̂2
x , L̂z] + [L̂2

y, L̂z] + [L̂2
z , L̂z ] (5.10)

Considering the first term on the right-hand side and using equations (5.7)–(5.9)

[L̂2
x , L̂z] = L̂ x L̂x L̂z − L̂z L̂ x L̂x

= L̂ x(−i}L̂ y + L̂z L̂ x )− (i}L̂ y + L̂ x L̂z)L̂ x

= −i}(L̂ x L̂ y + L̂ y L̂x) (5.11)

Similarly
[L̂2

y, L̂z ] = i}(L̂ x L̂ y + L̂ y L̂x) (5.12)

Also
[L̂2

z , L̂z ] = L̂3
z − L̂3

z = 0 (5.13)

Substituting from (5.11), (5.12), and (5.13) into (5.10) and generalizing the result
to the commutator brackets containing the other components we get

[L̂2, L̂ x ] = [L̂2, L̂ y] = [L̂2, L̂z] = 0 (5.14)

It follows from (5.7)–(5.9) that the operators representing any two
components of angular momentum do not commute and are therefore not
compatible. If, therefore, the system is in an eigenstate of one angular momentum
component, it will not be simultaneously in an eigenstate of either of the
others. However, (5.14) shows that the total angular momentum can be measured
compatibly with any one component. We shall therefore approach the eigenvalue
problem by looking for a set of functions which are simultaneously eigenfunctions
of the total angular momentum and one component, which is conventionally
chosen to be the z component L̂z .

5.2 The eigenvalues and eigenfunctions

We can obtain an explicit expression for the operators representing the angular
momentum components using the forms of the position and momentum operators
given in postulate 4.3:

P̂ = −i}∇ R̂ = r
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Hence
L̂ = −i}r× ∇ (5.15)

When considering the angular momentum of a particle moving about a point, it
is a great advantage to refer to a spherical polar coordinate system similar to that
used in chapter 3 when discussing the energy eigenvalues of a particle in a central
field. Expressions for L̂z and L̂2 in this coordinate system will be derived using
vector calculus, but readers who are not familiar with this technique may prefer to
accept equations (5.18) and (5.19) and proceed to the discussion following these
equations.

We first refer the vector r to the origin of the spherical polar coordinate
system (cf. figure 3.2), giving us the standard expression

∇ = r0
∂

∂r
+ 1

r
θ

∂

∂θ
+ 1

r sin θ
φ

∂

∂φ
(5.16)

where r0, θ and φ are the three basic unit vectors of the spherical polar system. It
follows directly that

L̂ = −i}r× ∇ = −i}

(
φ

∂

∂θ
− 1

sin θ
θ

∂

∂φ

)
(5.17)

Taking the polar axis to be z, the unit vector, z0, in this direction is

z0 = cos θr0 − sin θθ

Hence

L̂z = z0 · L̂ = −i}
∂

∂φ
(5.18)

An expression for L̂2 is obtained from the vector identity

L̂2 = −}2(r×∇) · (r×∇)

= −}2r · [∇ × (r×∇)]
Substituting for r×∇ from (5.17) this expression becomes

L̂2 = −}2r · ∇ ×
(

φ
∂

∂θ
− θ

1

sin θ

∂

∂φ

)

so that, using the standard expression for curl in spherical polar coordinates we
get

L̂2 = −}2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
(5.19)

We can now use (5.18) and (5.19) to obtain the eigenvalues and the
common set of eigenfunctions for the operators L̂z and L̂2. Considering L̂2
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first, we notice that (5.19) is identical (apart from a multiplicative constant) to
the differential equation (3.26) determining the angularly dependent part of the
energy eigenfunctions in the central field problem which has already been solved
in chapter 3. It follows directly from (3.40) that the eigenvalues of L̂2 are

l(l + 1)}2 (5.20)

where l is a positive integer or zero, and that the corresponding eigenfunctions—
cf. (3.44)—are

Ylm(θ, φ) = (−1)m
[
(2l + 1)

4π

(l − |m|)!
(l + |m|)!

]1/2

P |m|l (cos θ)eimφ (5.21)

where m is an integer whose modulus is less than or equal to l, and some of the
properties of the spherical harmonics Ylm and the associated Legendre functions,
P |m|l , have been discussed in chapter 3. It follows immediately from (5.18) and
(5.21) that

L̂zYlm = −i}
∂Ylm

∂φ
= m}Ylm (5.22)

so the functions Ylm are the simultaneous eigenfunctions of L̂z and L̂2 that we
have been looking for and the eigenvalues of L̂z are given by

m} where − l 6 m 6 l (5.23)

We have therefore confirmed the physical interpretation of the quantum
numbers l and m that we anticipated in chapter 3: the square of the total angular
momentum is quantized in units of l(l + 1)}2 and the z component in units of
m}. The condition −l 6 m 6 l corresponds to the obvious requirement that a
measurement of the total angular momentum must yield a result at least as large
as that from a simultaneous measurement of any component. If the magnitude
of the total angular momentum and that of the z component are known, it follows
that the angular momentum vector must be at a fixed angle to the z axis. However,
its orientation with respect to the x and y axes is unknown and neither of these
components can therefore be measured compatibly with L̂z , which is consistent
with the results derived earlier from the commutation relations. The possible
orientations with respect to the z axis are illustrated in figure 5.1 for the case
where l = 2: we note that there is no eigenstate where the angular momentum is
exactly parallel to the z axis, which is to be expected as this configuration would
imply that the x and y components were simultaneously known to be exactly
equal to zero.

Our knowledge of the angular-momentum eigenvalues and eigenfunctions
also helps us to understand more clearly the physical basis of the degeneracy
found in the energy states of the central-field problem in chapter 3. The central-
field Hamiltonian, which is contained in the time-independent Schrödinger
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Figure 5.1. The possible orientations of the angular momentum vector relative to the z
axis in the case where l = 2. Note that the orientation within the xy plane is unknown if
the z component has a definite value, so the angular momentum vector joins the origin to
the edge of a cone whose axis is z.

equation (3.23), can be written using (5.19) in the form

Ĥ = − }
2

2m

1

r2

∂

∂r

(
r2 ∂

∂r

)
+ V (r)+ L̂2

2mr2 (5.24)

The final term on the right-hand side is the quantum-mechanical equivalent of the
centrifugal term in the classical expression for the total energy. The only part of
Ĥ which depends on θ and φ is this last term so it follows from this, and the
fact that L̂2 and L̂z are not functions of r , that Ĥ commutes with both L̂2 and
L̂z , so that the total energy eigenfunctions are, in this case, also eigenfunctions of
the total angular momentum and of one component. Energy levels corresponding
to the same value of l, but different values of m are degenerate, so the angular
part of the wavefunction may be any linear combination of the eigenfunctions
corresponding to these various values of m. This is equivalent to saying that the
spatial orientation of the angular momentum vector is completely unknown so that
no component of it can be measured unless the spherical symmetry of the problem
is broken—for example by applying a magnetic field as will be discussed in the
next section.
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5.3 The experimental measurement of angular momentum

Now that we have derived expressions for the angular momentum eigenvalues,
we shall see how these agree with the results of experimental measurement. Such
measurements are often made by studying the effects of magnetic fields on the
motion of particles and we shall consider these in this section.

We first treat the problem classically. We consider the classical motion of
a particle, such as an electron, with charge −e and mass me moving in a circle
with angular velocity ω in an orbit of radius r . Its angular momentum l therefore
has magnitude meωr2 and points in a direction perpendicular to the plane of the
orbit. The circulating charge is clearly equivalent to an electric current −eω/2π
moving round a loop of area πr2. Its magnetic moment µ has magnitude equal
to the product of the current and the loop area which is eωr2/2. Its direction is
parallel, but opposite to l (because of the negative sign). Hence we have

µ = − e

2me
l (5.25)

We can now apply postulate 4.3 to (5.25) to obtain the quantum-mechanical
operator representing a measurement of magnetic moment:

µ̂ = − e

2me
L̂

that is,

µ̂z = − e

2me
L̂z etc. (5.26)

It follows that, if the z component of the magnetic moment of an atom is
measured, a value for this component of the angular momentum is also obtained.

If a magnetic field B is applied to such a system, the energy of interaction
between the magnetic moment and the field will be −µ · B. The corresponding
quantum-mechanical operator in the case where B is in the z direction is therefore
�Ĥ where

�Ĥ = eB

2me
L̂z (5.27)

and, if the system is in an eigenstate of L̂z with eigenvalue m}, a measurement of
this interaction energy will yield the value

�E = µB Bm (5.28)

where

µB = e}

2me
(5.29)

and is known as the Bohr magneton. Thus, for example, if we apply a magnetic
field to an atom in a p state (i.e. one with l = 1,m = −1, 0 or 1) the
interaction energy (5.28) will lift its threefold degeneracy. We would therefore
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expect spectral lines resulting from a transition between this state and a non-
degenerate s (l = 0,m = 0) state to be split into a triplet, the angular frequency
difference between neighbouring lines being equal to (eB/2me). However, when
this experiment is performed on a one-electron atom such as hydrogen, a rather
different result is observed. For strong fields the spectra are consistent with the
2 p level having been split into four substates instead of three and the 1s level,
which was expected to remain single, into two. As the latter state possesses no
angular momentum associated with the motion of the electron in the field of the
nucleus, the observed magnetic moment and associated angular momentum must
arise from some other cause.

As we shall show, these results can be explained if we postulate that an
electron possesses an additional intrinsic angular momentum in addition to the
orbital angular momentum discussed so far. Following normal practice, we shall
often refer to the intrinsic angular momentum as ‘spin’, but, as will be discussed
later, this should not be taken to mean that the electron is actually spinning.
In the l = 0 state this intrinsic angular momentum can apparently adopt two
orientations, while in the l = 1 state the orbital and intrinsic angular momenta
couple to produce the four substates observed. The details of this ‘spin–orbit
coupling’ will be discussed in the next chapter.

The Stern–Gerlach experiment

We have seen that the energy of an atom which possesses a magnetic moment
is changed by the interaction between this magnetic moment and an applied
magnetic field. If this applied field is inhomogeneous—i.e. varies from place
to place—there will be a force on the atom directing it towards regions where the
interaction energy is smaller. Thus, if an atom with a z component of magnetic
moment µz is in a magnetic field directed along z whose magnitude B is a
function of z, it will be subject to a force F given by

F = −µz
∂B

∂z
(5.30)

An experiment which makes use of this effect to measure atomic magnetic
moments is the Stern–Gerlach experiment. A beam of atoms is directed between
two poles of a magnet that are shaped as shown in figure 5.2(b) in order to produce
an inhomogeneous field which exerts a force on the atoms in a direction transverse
to the beam. On emerging from the field, the atoms will have been deflected by an
amount proportional to this component of their magnetic moment. In the absence
of spin, therefore, we should expect the beam to be split into 2l + 1 parts where
l is the total orbital angular momentum quantum number and, in the particular
case where l is zero, we should then expect no splitting at all. However, when
this experiment is performed on hydrogen (or a similar one-electron system) in
its ground state, the atomic beam is found to be split into two, implying that the
atom possesses a magnetic moment whose z component can adopt two opposite
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Figure 5.2. (a) A beam of spin-half atoms is split by an inhomogeneous magnetic field.
The form of the field is shown in projection down the beam direction in (b).

orientations with respect to the field. As the ground state of hydrogen has zero
angular momentum, this magnetic moment cannot be associated with the orbital
motion of the electron and must be due to its spin. Thus the Stern–Gerlach
experiment provides direct evidence for the electron possessing intrinsic angular
momentum, which is consistent with the spectroscopic results described earlier.
It is clear, however, that the rules governing the quantization of spin must be
different from those governing orbital angular momentum, as the latter require
there to be an odd number (2l + 1) of eigenstates of Lz whereas an even number
(2) is observed in the Stern–Gerlach experiment. This would be consistent only
if the total angular momentum quantum number l equalled one half in this case,
with the quantum number representing the z component equal to ± 1

2 . But our
earlier discussion, based on the analysis in chapter 3, showed that these should be
integers.
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5.4 General solution to the eigenvalue problem

If we re-examine the arguments leading to the quantization of orbital angular
momentum, which were set out when the equivalent problem of the energy
eigenfunctions of a particle in a central field was discussed in chapter 3, we
see that it resulted from the boundary condition on the wavefunction requiring
it to be a continuous, single-valued, integrable function of the particle position.
However, spin is not associated with the motion of the particle in space and
its eigenfunctions are therefore not functions of particle position, so the same
conditions need not apply in this case. However, spin is a form of angular
momentum so it might be reasonable to expect the quantum-mechanical operators
representing its components to obey the same algebra as do the corresponding
operators in the orbital case. In particular, we might expect the commutation
relations (5.7)–(5.9) and (5.14) to be universally valid for all forms of angular
momentum. We shall assume this to be the case and, using only this assumption
and the basic physical condition that the total angular momentum eigenvalues
must be at least as large as those of any simultaneously measured component, we
shall obtain expressions for the angular-momentum eigenvalues that are valid for
spin, as well as in the orbital case.

Let the simultaneous eigenvalues of L̂2 and L̂z be α and β respectively and
let the corresponding eigenfunction be φ, where φ is not necessarily a function of
particle position. (A suitable representation in the case of spin will be described
in the next chapter.) We then have

L̂2φ = αφ and L̂zφ = βφ where α > β2 (5.31)

We now define two operators L̂+ and L̂− as

L̂+ = L̂ x + i L̂ y L̂− = L̂ x − i L̂ y (5.32)

These operators do not represent physical quantities (note that they are not
Hermitian) but are very useful in developing the mathematical argument that
follows. For reasons that will soon become clear they are known as raising and
lowering operators, or sometimes as ladder operators. Similar operators were
used in the treatment of the harmonic oscillator in chapter 4.

We first establish some commutation relations involving L̂+ and L̂−. From
(5.32), using (5.4) and (5.7),

L̂+ L̂− = L̂2
x + L̂2

y − i [L̂ x , L̂ y]
= L̂2 − L̂2

z + }L̂z (5.33)

Similarly
L̂− L̂+ = L̂2 − L̂2

z − }L̂z (5.34)

Hence
[L̂+, L̂−] = 2}L̂z (5.35)
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We also have

[L̂z, L̂+] = [L̂z, L̂ x ] + i [L̂z, L̂ y]
= i}(L̂ y − i L̂ x )

using (5.8) and (5.9). That is,

[L̂z, L̂+] = }L̂+ (5.36)

and similarly,
[L̂z, L̂−] = −}L̂− (5.37)

Having established these relations, which we shall refer to again shortly, we now
operate on both sides of the second of equations (5.31) with L̂+ giving

L̂+ L̂zφ = L̂+βφ

Using (5.36) and remembering that β is a constant, this leads to

L̂z(L̂+φ) = (β + })(L̂+φ) (5.38)

Similarly, using (5.31) and (5.37), we get

L̂z(L̂−φ) = (β − })(L̂−φ) (5.39)

Thus, if φ is an eigenfunction of L̂z with eigenvalue β, (L̂+φ) and (L̂−φ) are also
eigenfunctions of L̂z with eigenvalues (β + }) and (β − }) respectively.

We also have, from the first of the equations (5.31),

L̂+ L̂2φ = α L̂+φ and L̂− L̂2φ = α L̂−φ (5.40)

Now we know that L̂2 commutes with both L̂ x and L̂ y so it must also commute
with L̂+ and L̂−; (5.40) therefore becomes

L̂2(L̂+φ) = α(L̂+φ) and L̂2(L̂−φ) = α(L̂−φ) (5.41)

so the functions (L̂+φ) and (L̂−φ) as well as being eigenfunctions of L̂z are also
eigenfunctions of L̂2 with eigenvalue α. It follows that the operators L̂+ and
L̂− respectively ‘raise’ and ‘lower’ the eigenfunctions up or down the ‘ladder’ of
eigenvalues of L̂z corresponding to the same eigenvalue of L̂2, so accounting for
the names of the operators mentioned earlier.1

We can now apply the condition that β2 is less than or equal to α which
implies that there must be both a maximum (say β1) and minimum (say β2) value

1 The operators L̂+ and L̂− are also known as ‘creation’ and ‘annihilation’ operators respectively
because they ‘create’ or ‘annihilate’ quanta of L̂ z .
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of β corresponding to a particular value of α. If φ1 and φ2 are the corresponding
eigenfunctions, we can satisfy (5.38) and (5.39) only if

L̂+φ1 = 0 (5.42)

and
L̂−φ2 = 0 (5.43)

We now operate on (5.42) with L̂− and use (5.34) to get

L̂− L̂+φ1 = (L̂2 − L̂2
z − }L̂z)φ1 = 0 (5.44)

and hence, using (5.31),

(α − β2
1 − }β1)φ1 = 0

That is,
α = β1(β1 + }) (5.45)

Similarly, from (5.43), (5.33) and (5.31),

α = β2(β2 − }) (5.46)

It follows from (5.45) and (5.46) (remembering that β2 must be less than β1 by
definition) that

β2 = −β1 (5.47)

Now we saw from (5.38) and (5.39) that neighbouring values of β are separated
by } so it follows that β1 and β2 are separated by an integral number (say n) of
steps in }. That is,

β1 − β2 = n} (5.48)

It follows directly from (5.47) and (5.48) that

β1 = −β2 = n}/2

and hence, putting n equal to 2l and using (5.45)

α = l(l + 1)}2 where l = n/2 (5.49)

and
β = m} (5.50)

where m varies in integer steps between −l and l, and l is either an integer or a
half-integer.

We see that this result is exactly the one we have been looking for. In the
case of orbital angular momentum, the extra condition that the wavefunction must
be a well-behaved function of particle position requires n to be even and l to be
an integer, so that (5.49) and (5.50) are equivalent to (5.20) and (5.23). However,
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when we are dealing with intrinsic angular momentum this condition no longer
holds and if n is odd, l and m are half-integers. In the particular case of electron
spin, the Stern–Gerlach experiment showed that the z-component operator has
two eigenstates, implying that the total-spin quantum number equals one-half in
this case, with m = ± 1

2 . This is always true for the electron and also for other
fundamental particles such as the proton, the neutron and the neutrino which are
accordingly known as ‘spin-half’ particles. Other particles exist with total-spin
quantum numbers that are integers or half-integers greater than one-half, and their
angular-momentum properties are also exactly as predicted by this theory.

The possession by the electron of two kinds of angular momentum suggests
an analogy with the classical case of a planet, such as the earth, orbiting the
sun: it has orbital angular momentum associated with this motion and intrinsic
angular momentum associated with the fact that it is spinning about an axis.
Because of this, the intrinsic angular momentum of an electron (or other particle)
is usually referred to as spin. However, there is no evidence to suggest that the
electron is literally spinning and, indeed, it turns out that such a mechanical model
could account for the observed angular momentum only if the electron had a
structure, parts of which would have to be moving at a speed faster than that
of light, so contradicting the theory of relativity! In fact the only satisfactory
theory of the origin of spin does result from a consideration of relativistic effects:
Dirac showed that quantum mechanics and relativity could be made consistent
only if the electron is assumed to be a point particle which possesses intrinsic
angular momentum. By ‘intrinsic’ we mean that this is a fundamental property
of the electron, just like its charge or mass. Although conventionally referred
to as ‘spin’, nothing is assumed about its underlying structure. We shall give
a brief introduction to Dirac’s theory in chapter 11, where we shall see that
all fundamental particles, such as the electron, should have intrinsic angular
momentum with quantum number equal to one-half. Experimentally, it is found
that particles that are not spin-half2 are either ‘exchange’ particles such as the
photon which are not subject to Dirac’s theory, or they have a structure, being
composed of several more fundamental spin-half particles. For example, the
alpha particle has total spin zero, but this results from a cancellation of the spins
of the constituent protons and neutrons. The truly fundamental constituents of
matter (apart from the photon and other ‘exchange’ particles that are not subject
to Dirac’s theory) are believed to be leptons (which include the electron) and
quarks and these are all spin-half particles.

In order to proceed further with our study of angular momentum, we shall
have to consider the eigenfunctions as well as the eigenvalues of the angular-

2 It is very important when referring to particles as ‘spin-half’, ‘spin-one’ etc. to remember that these
labels refer to the total-spin quantum number and not to the magnitude of the angular momentum
which actually has the value

√
3}/2 in the first case and

√
2} in the second. Similarly an electron

with z component of spin equal to 1
2} or − 1

2} is often referred to as having ‘spin up’ or ‘spin down’

respectively even though its angular momentum vector is inclined at an angle of cos−1(3−1/2) � 55◦
to the z axis—cf. figure 5.1.
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momentum operators. However, we have already seen that if this discussion
is to include spin, these eigenfunctions cannot be expressed as functions of
particle position. In the next chapter, therefore, we shall develop an alternative
representation of quantum mechanics based on matrices, which will be used to
describe the properties of intrinsic angular momentum.

Normalization

We have seen that the operators L̂+ and L̂− operate on the eigenfunction φm of
L̂z to produce the eigenfunctions φm+1 and φm−1. However, there is nothing in
the earlier treatment to ensure that the eigenfunctions so created are normalized
and, in general, they are not. To ensure normalization, we have to multiply
the eigenfunctions by appropriate constants, after creating them using the ladder
operators, as we now show.

We first show that, although L̂+ and L̂− are not Hermitian operators, they
are Hermitian conjugates in the sense that∫

f L̂+g dτ =
∫

gL̂∗− f dτ (5.51)

This follows straightforwardly from the definitions of L̂+ and L̂− (5.32) and the
fact that L̂ x and L̂ y are Hermitian:

∫
f L̂+g dτ =

∫
f (L̂ x + i L̂ y)g dτ =

∫
g(L̂ x + i L̂ y)

∗ f dτ =
∫

gL̂∗− f dτ

We now show how a normalized eigenfunction, φm+1, can be generated from φm ,
given that the latter is normalized.∫

φm+1φ
∗
m+1dτ =

∫
(L̂+φm)L̂∗+φ∗mdτ

=
∫

φ∗m L̂− L̂+φmdτ = [l(l + 1)− m(m + 1)]} (5.52)

using (5.51), (5.44) and the fact that φm is normalized. To produce a ladder of
normalized eigenfunctions, we must therefore use

φm+1 = [l(l + 1)− m(m + 1)]−1/2
}
−1 L̂+φm (5.53)

Similarly in the case of L̂−,

φm−1 = [l(l + 1)− m(m − 1)]−1/2
}
−1 L̂−φm (5.54)

These results will be used during the general treatment of the coupling angular
momenta toward the end of the next chapter.
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Problems

5.1 A point mass µ is attached by a massless rigid rod of length a to a fixed point in space and is free
to rotate in any direction. Find a classical expression for the energy of the system if its total angular
momentum has magnitude L , and hence show that the quantum-mechanical energy levels are given
by l(l + 1)}2/2ma2 where l is a positive integer.

5.2 The mass and rod in problem 5.1 are now mounted so that they can rotate only about a particular
axis that is perpendicular to the rod and fixed in space. What are the energy levels now? What can be
said about the components of angular momentum perpendicular to the axis of such a system when it
is in an energy eigenstate?

5.3 A particle has a wavefunction of the form z exp[−α(x2 + y2 + z2)] where α is a constant. Show
that this function is an eigenfunction of L̂2 and L̂ z and find the corresponding eigenvalues. Use the
raising and lowering operators L+ and L− to obtain (unnormalized) expressions for all the other
eigenfunctions of Lz that correspond to the same eigenvalue of L̂2.

Hint: Use Cartesian coordinates.

5.4 Verify directly that the spherical harmonics Ylm with l 6 2 (see chapter 3) are eigenfunctions of
L̂2 and L̂ z with the appropriate eigenvalues.

5.5 The total orbital angular momentum of the electrons in a silver atom turns out to be zero while its
total-spin quantum number is 1

2 , resulting in a magnetic moment whose z component has a magnitude

of 1 Bohr magneton (9.3 × 10−24 J T−1). In the original Stern–Gerlach experiment, silver atoms,
each with a kinetic energy of about 3× 10−20 J travelled a distance of 0.03 m through a non-uniform
magnetic field of gradient 2.3×103 T m−1. Calculate the separation of the two beams 0.25 m beyond
the magnet.

5.6 The wavefunction of a particle is known to have the form f (r, θ) cosφ. What can be predicted
about the likely outcome of a measurement of the z component of angular momentum of this system?

5.7 Derive (5.54) in a similar manner to that set out for (5.53).

5.8 Express L̂ x and L̂ y in terms of L̂+ and L̂− and hence show that for a system in an eigenstate of

L̂ z , 〈L̂ x 〉 = 〈L̂ y〉 = 0. Also obtain expressions for 〈L̂2
x 〉 and 〈L̂2

y〉 (using (5.53) and (5.54) where
necessary) and compare the product of these two quantities with the predictions of the uncertainty
principle.

5.9 Obtain expressions for L̂ x and L̂ y in spherical polar coordinates and hence show that

L̂± = }e±iφ
(
± ∂

∂θ
+ i cot θ

∂

∂φ

)

5.10 Use the raising and lowering operators to derive expressions for all the spherical harmonics with
l = 2, given that

Y20 =
(

5

16π

)1/2
(3 cos2 θ − 1)

Compare your results with those given in chapter 3.



Chapter 6

Angular momentum II

In the first part of this chapter we shall show how it is possible to represent
dynamical variables by matrices instead of differential operators without affecting
the predicted results of physically significant quantities. We shall see that
although this representation is often more complicated and cumbersome than the
methods used earlier, it has a particularly simple form when applied to problems
involving angular momentum, and has the great advantage that it can be used in
the case of spin where no differential operator representation exists. We shall use
such spin matrices to analyse experiments designed to measure the component of
spin in various directions and find that these provide an important and illustrative
example of the quantum theory of measurement.

In the second part of this chapter we shall discuss the problem of the addition
of different angular momenta (such as the orbital and spin angular momenta of an
electron in an atom) and illustrate the results by discussing the effects of spin–
orbit coupling and applied magnetic fields on the spectra of one-electron atoms.

6.1 Matrix representations

We first consider the case of a dynamical variable represented by the Hermitian
operator Q̂. If one of its eigenvalues is q and the corresponding eigenfunction is
ψ then

Q̂ψ = qψ (6.1)

We now expand ψ in terms of some complete orthonormal set of functions φn ,
which are not necessarily eigenfunctions of Q̂—cf. (4.29):

ψ =
∑

n

anφn (6.2)

As in chapter 4, we assume that the φn form a discrete set, but the extension to the
continuous case is reasonably straightforward. Substituting from (6.2) into (6.1)

109
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we get ∑
n

an Q̂φn = q
∑

n

anφn (6.3)

We now multiply both sides of (6.3) by the complex conjugate of one of the
functions—say φ∗m—and integrate over all space. This leads to∑

n

Qmnan = qam (6.4)

where the Qmn are defined by

Qmn =
∫

φ∗m Q̂φn dτ (6.5)

and we have used the orthogonality property in deriving the right-hand side of
(6.4). Equation (6.4) is true for all values of m so we can write it in matrix form:


Q11 Q12 · · ·
Q21 Q22 · · ·
· · · · ·
· · · · ·
· · · · ·







a1
a2
·
·
·


 = q




a1
a2
·
·
·


 (6.6)

where it is clear from (6.5) and the fact that Q̂ is a Hermitian operator, that
Q∗mn = Qnm—cf. (4.13). A matrix whose elements obey this condition is
known as a Hermitian matrix, and equation (6.6) is a matrix eigenvalue equation.
Such an equation has solutions only for the particular values of q that satisfy the
determinantal condition ∣∣∣∣∣∣∣∣∣∣

Q11 − q Q12 · · ·
Q21 Q22 − q · · ·
· · · · ·
· · · · ·
· · · · ·

∣∣∣∣∣∣∣∣∣∣
= 0 (6.7)

There are as many solutions to this equation as there are rows (or columns) in
the determinant. As we have already defined q as one of the eigenvalues of
the original operator Q̂, it follows that the eigenvalues of the matrix equation
(6.6) are the same as those of the original differential equation (6.1) and these
two equations are therefore formally equivalent. Equation (6.6) can therefore be
written in the form

[Q][a] = q[a] (6.8)

where [Q] is the matrix whose elements are Qmn and [a] is the column vector
whose elements are an . In the same way that ψ is an eigenfunction of the
Hermitian operator Q̂, the column vector [a] is an ‘eigenvector’ of the Hermitian
matrix [Q].
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The properties of Hermitian matrices are closely analogous to those of
Hermitian operators discussed in chapter 4. To demonstrate this, we often need to
transpose a matrix (by exchanging its rows and columns) or a vector (by replacing
a column vector by a row vector and vice versa) and at the same time take its
complex conjugate. This process is known as ‘taking the Hermitian conjugate’ of
the matrix or vector and is symbolized by a † superscript. Thus, for any matrix
[A]

[A†] ≡ [ Ã∗]
so that if [Q] is a Hermitian matrix

[Q†] = [Q] (6.9)

For example, we can show that the eigenvalues of a Hermitian matrix are
real—cf. (4.18). We take the Hermitian conjugate of (6.8)

[a†][Q] = q∗[a†] (6.10)

using the standard rule for transposing a product of matrices and (6.9). We now
pre-multiply (6.8) by [a†] to get

[a†][Q][a] = q[a†][a]
and post-multiply (6.10) by [a] to get

[a†][Q][a] = q∗[a†][a]
from which it follows that q = q∗ and the eigenvalue is real.

We now consider orthonormality which was expressed in chapter 4 as∫
φ∗nφm dτ = δnm (6.11)

If [a′] is another eigenvector of [Q] with eigenvalue q ′, we post-multiply (6.10)
by [a′] to get

[a†][Q][a′] = q∗[a†][a′] (6.12)

We now pre-multiply (6.8) by [a′†] to get

[a′†][Q][a] = q ′[a′†][a]
and take the Hermitian conjugate of this equation:

[a†][Q][a′] = q ′∗[a†][a′] (6.13)

The left-hand sides of (6.12) and (6.13) are equal, so it follows that

[a†][a′] = 0 (6.14)
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unless q = q ′. By orthogonality of eigenvectors we therefore mean that the
scalar product of one with the Hermitian conjugate of the other is zero. We can
also ensure normalization, in the sense that [a†][a] = 1, by multiplying all the
elements of the eigenvector by an appropriate constant. The other properties of
Hermitian operators set out in chapter 4 can be converted to matrix form in a
similar manner, the main difference being that where integrals of products of
operators and functions appear in the former case, they are replaced by products
of matrices and vectors in the latter.

We see from this that the physical properties of a quantum-mechanical
system can be derived using appropriate matrix equations instead of the
differential operator formalism. The postulates and algebra contained in chapter 4
can all be expressed directly in matrix terms: the dynamical variables are
represented by Hermitian matrices and the state of the system is described by
a ‘state vector’ that is identical to the appropriate eigenvector immediately after a
measurement whose result was equal to the corresponding eigenvalue. Moreover,
provided we could postulate appropriate matrices to represent the dynamical
variables, the whole procedure could be carried out without ever referring to the
original operators or eigenfunctions.

However, the matrix method suffers from one major disadvantage. This
is that because most quantum systems have an infinite number of eigenstates,
the dynamical variables, including position and momentum, usually have to be
represented by matrices of infinite order. Techniques for obtaining the eigenvalues
in some such cases have been developed and, indeed, Heisenberg developed a
form of quantum mechanics based on matrices (sometimes known as ‘matrix
mechanics’) and used it to solve the energy eigenvalue equations for the simple
harmonic oscillator and the hydrogen atom before ‘wave mechanics’ had been
invented by Schrödinger. Nevertheless, matrices of infinite order are generally
difficult to handle and solving the corresponding differential equations is nearly
always easier. This problem does not arise when the number of eigenvalues is
finite, which accounts for the usefulness of matrix methods when studying angular
momentum. Provided the total angular momentum has a fixed value (determined
by the quantum number l) only the 2l + 1 states with different values of the
quantum number m have to be considered and the angular momentum operators
can be represented by matrices of order 2l + 1. This simplification is particularly
useful in the case of spin, as for spin-half particles, s = 1

2 (s is the equivalent
of l in the case of spin) and therefore 2 × 2 matrices can be used. Moreover, we
have seen that it is not possible to represent the spin components by differential
operators so matrix methods are particularly useful in this case.

6.2 Pauli spin matrices

A suitable set of 2 × 2 matrices which can be used to represent the angular-
momentum components of a spin-half particle were first discovered by W. Pauli
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and are known as Pauli spin matrices. These are:

σx =
[

0 1
1 0

]
σy =

[
0 −i
i 0

]
σz =

[
1 0
0 −1

]
(6.15)

and the operators Ŝx , Ŝy and Ŝz representing the three spin components are
expressed in matrix form as:

Ŝx = 1
2}σx etc. (6.16)

To see that these matrices do indeed form a suitable representation for spin, we
first check whether they obey the correct commutation relations:

[Ŝx , Ŝy ] = 1
4}

2
([

0 1
1 0

] [
0 −i
i 0

]
−

[
0 −i
i 0

] [
0 1
1 0

])

= 1
4}

2
([

i 0
0 −i

]
−

[−i 0
0 i

])

= i 1
2}

2
[

1 0
0 −1

]
= i}Sz (6.17)

This result agrees with that derived earlier (5.7) and the other commutation
relations can be similarly verified. Turning now to the eigenvalues, we see that
those of Ŝz are simply 1

2} times the eigenvalues of σz which are in turn obtained
from the 2× 2 equivalent of (6.7):∣∣∣∣1− q 0

0 −1− q

∣∣∣∣ = 0 (6.18)

Hence q = ±1 and the eigenvalues of Ŝz are± 1
2} as expected. The corresponding

eigenvectors are obtained from the eigenvalue equation, which in the case q = +1
is

1

2
}

[
1 0
0 −1

] [
a1
a2

]
= 1

2
}

[
a1
a2

]
(6.19)

which is satisfied if a2 = 0; if we require the eigenvector to be normalized, we
also have a1 = 1. In the case q = −1, the corresponding results are a1 = 0
and a2 = 1. We therefore conclude that the eigenvectors corresponding to the

eigenvalues 1
2} and − 1

2} are

[
1
0

]
and

[
0
1

]
respectively. Moreover, these are

clearly orthogonal as expected from (6.14).
Eigenvalues and eigenvectors can similarly be found for Ŝx and Ŝy . In each

case the eigenvalues are equal to ± 1
2} and the corresponding eigenvectors are

shown in table 6.1. The reader should verify that each eigenvector is normalized
and that each pair is orthogonal.
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Table 6.1. The eigenvalues and eigenvectors of the matrices representing the angular
momentum components of a spin-half particle. NB: The overall phase of an eigenvector,
like that of a wavefunction, is arbitrary.

Spin
component Eigenvalue Eigenvector

Ŝx
1
2} αx ≡ 1√

2

[
1
1

]

Ŝx − 1
2} βx ≡ 1√

2

[
1
−1

]

Ŝy
1
2} αy ≡ 1√

2

[
1
i

]

Ŝy − 1
2} βy ≡ 1√

2

[
1
−i

]

Ŝz
1
2} αz ≡

[
1
0

]

Ŝz − 1
2} βz ≡

[
0
1

]

As a further test of the correctness of this representation, we consider the
square of the total angular momentum whose operator is given by

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z

= 3

4
}

2
[

1 0
0 1

]
(6.20)

using (6.15) and (6.16). Clearly Ŝ2 commutes with Ŝx , Ŝy and Ŝz as expected and
all the eigenvectors given in table 6.1 are also eigenvectors of Ŝ2 with eigenvalue
1
2 (

1
2 + 1)}2. We conclude therefore that the Pauli spin matrix representation

for the angular-momentum components of a spin-half particle produces the same
results as were obtained previously, and we can proceed with confidence to use
this representation to obtain further information about the properties of spin.

6.3 Spin and the quantum theory of measurement

The measurement of spin provides a very clear illustration of the quantum theory
of measurement. Consider a beam of spin-half particles travelling along the y
axis, as in figure 6.1, towards a Stern–Gerlach apparatus oriented to measure the
z component of spin (such an apparatus will be denoted by SGZ). We assume that
the number of particles in each beam is small enough for there to be only one in
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Figure 6.1. Successive measurements of the angular momentum components of spin-half
particles. The boxes represent sets of Stern–Gerlach apparatus which direct a particle into
the upper or lower output channel depending on whether the appropriate spin component
is found to be positive or negative. The y direction is from left to right.

the Stern–Gerlach apparatus at any one time; we can therefore treat each particle
independently and ignore interactions between them. Two beams of particles
will emerge, one with z component of spin equal to − 1

2}, which we block off
with a suitable stop, and the other with z component 1

2}, which we allow to
continue. This measurement has therefore defined the state of the system and
the state vector of the particles that carry on is known to be the eigenvector αz of
Ŝz , corresponding to an eigenvalue of 1

2} (cf. table 6.1). If we were to pass this
beam directly through another SGZ apparatus, we should expect all the particles
to emerge in the channel corresponding to Sz = 1

2} and none to emerge in the
other channel, and indeed this prediction is confirmed experimentally.

We now consider the case where the particles that emerge from the first SGZ
with a positive z component pass into a similar apparatus oriented to measure
the x component of spin (that is an SGX) as in figure 6.1. Each particle must
emerge from the SGX with Sx equal to either 1

2} or − 1
2}, but, as the initial

state vector is not an eigenvector of Ŝx , we cannot predict which result will
actually be obtained. However, we can use the quantum theory of measurement
(postulate 4.4) to predict the relative probabilities of the possible outcomes. We
expand the initial state vector 1 as a linear combination of the eigenvectors of Ŝx

and the probabilities are then given by the squares of the appropriate expansion
coefficients. Thus, referring to table 6.1,

αz = c+αx + c−βx (6.21)

1 To define the complete state of the particle we should multiply the vector representing the spin state
of the particle by a wavefunction representing its motion in space. For example, the full state of the

particle emerging from the first SGZ apparatus would have the form exp (iky)

[
1
0

]
. It simplifies the

treatment if this is implied rather than explicitly included.
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where c+ and c− are constants. That is,[
1
0

]
= c+

1√
2

[
1
1

]
+ c−

1√
2

[
1
−1

]
(6.22)

from which it follows directly that c+ = c− = 2−1/2 and therefore

αz = 1√
2
(αx + βx) (6.23)

Thus the two possible results of a measurement of the x component of spin have
equal probability and, although we cannot predict the result of the measurement
on any particular particle, we know that if the experiment is repeated a large
number of times, half the particles will emerge in each channel. We saw in
chapter 4 that an important aspect of quantum measurement theory is that the act
of measurement leaves the system in an eigenstate of the measurement operator,
but destroys knowledge of any other property that is not compatible with it. To
emphasize this point, consider one of the beams of particles emerging from the
SGX to be passed through a second SGZ (see figure 6.1 again); a similar argument
to the previous one shows that we shall again be unable to predict in which
channel a particular particle will emerge, although the relative probabilities of
the two possible results are again equal.

We see therefore that the act of measuring one component of spin has
destroyed any knowledge we previously had about the value of another. In fact
the quantum theory of measurement (at least as it is conventionally interpreted)
states that while a particle is in an eigenstate of Ŝz , it is meaningless to think of
it as having a value for the x component of its spin, as the latter can be measured
only by changing the state of the system to be an eigenstate of Ŝx . Moreover, as
we have seen, the result of a measurement of the x component is completely
unpredictable if the particle is in an eigenstate of Ŝz , and this indeterminacy
is to be thought of as an intrinsic property of such a quantum system. Some
scientists have found these features of quantum mechanics very unsatisfactory
and attempts have been made to develop other theories, known as ‘hidden variable
theories’, that avoid the problems of indeterminacy and the like. We shall discuss
these in some detail in chapter 13 where we shall show that, where such theories
predict results different from those of quantum mechanics, experiment has always
favoured the latter. In that chapter we shall also discuss the measurement problem
in more depth, again making use of the measurement of spin components as
an illustrative example. These discussions will involve the consideration of the
measurement of two spin components that are not necessarily at right angles to
each other and, as this also provides another example of the application of Pauli
spin matrices, we shall derive some relevant results for this case at this point.

We consider a modification of the set-up illustrated in figure 6.1 in which the
second Stern–Gerlach apparatus (SGφ) is oriented to measure the spin component
in the xz plane at an angle φ to z. The operator Ŝφ , representing the component
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of angular momentum in this direction, is given by analogy with the classical
expression as

Ŝφ = Ŝz cosφ + Ŝx sin φ

= 1

2
}

[
cosφ sin φ

sin φ − cosφ

]
(6.24)

using (6.15). The eigenvalues of this matrix are easily shown to be ± 1
2} as

expected and if the eigenvector in the positive case is

[
a1
a2

]
, then

1
2}(a1 cosφ + a2 sinφ) = 1

2}a1

and therefore
a1

a2
= sin φ

1− cosφ
= cos(φ/2)

sin(φ/2)
(6.25)

The normalized eigenvector is therefore

[
cos(φ/2)
sin(φ/2)

]
and a similar argument leads

to the expression

[− sin(φ/2)
cos(φ/2)

]
in the case where the eigenvalue equals − 1

2}.

We note that when φ = 0, the eigenvectors are the same as those of Ŝz ; and
when φ = π/2 they are identical to those of Ŝx (cf. table 6.1); this is to be
expected as the φ direction is parallel to z and x respectively in these cases. The
probabilities of obtaining a positive or negative result from such a measurement
are |c+|2 and |c−|2 respectively, where c+ and c− are now the coefficients of the
SGφ eigenvectors in the expansion of the initial state vector. Thus[

1
0

]
= c+

[
cos(φ/2)
sin(φ/2)

]
+ c−

[− sin(φ/2)
cos(φ/2)

]
(6.26)

from which it follows that

c+ = cos(φ/2) and c− = − sin(φ/2) (6.27)

and the probabilities of a positive or negative result are therefore cos2(φ/2) and
sin2(φ/2) respectively. We note that when φ = 0 the result is certain to be positive
because in this case the second apparatus is identical to the first, and that when
φ = π/2 (corresponding to a measurement of the x component) the probability
of each is equal to one-half in agreement with the earlier result. Experiments have
been performed to carry out measurements such as those described earlier, and in
each case they produce results in agreement with those predicted by the quantum
theory of measurement. We shall discuss such experiments in more detail in
chapter 13 where we shall find that the confirmation of results such as (6.27) is
an important test of the correctness of quantum mechanics when compared with
‘hidden variable’ theories.
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6.4 Dirac notation

P. A. M. Dirac was born in France and spent his academic career in the University
of Cambridge from the 1930s until his death in 1984. He is best known for
his work in developing the ‘Dirac equation’ which extends quantum mechanics
into the high-energy regime where relativistic effects are very important (see
chapter 12). Two main consequences of this are the fact that electrons and other
fundamental particles automatically acquire an intrinsic angular momentum or
‘spin’ and that every such particle also has an ‘antiparticle’—e.g. the positron is
the antiparticle of the electron.

Another major contribution by Dirac was to put the whole of quantum
mechanics on a more general footing. He was one of the first to realize that the
measurable results of the theory are independent of the ‘basis’ used to describe
them. By this we mean that alternative formulations, such as the wavefunction and
any matrix representation, are completely equivalent, as far as their predictions
of experimental results are concerned. Dirac developed a ‘representation-free’
notation to express this. Consider a typical quantum expression such as

Q12 =
∫

ψ∗1 Q̂ψ2dτ (6.28)

in wave notation and its equivalent in matrix notation which is

Q12 = [a1][Q][a2] (6.29)

In Dirac notation we write
Q12 = 〈1|Q̂|2〉 (6.30)

as a general expression that can stand for either of the other two. To express an
eigenfunction equation such as

Q̂φn = qnφn or [Q][a]n = q[a]n (6.31)

in Dirac notation, we split the ‘bracket’ in (6.30) into a ‘bra’ 〈n| and a ‘ket’ |n〉 to
get

Q̂|n〉 = q|n〉 (6.32)

We note that what is written inside the bra or the ket is quite arbitrary and can be
chosen to suit the context of the problem. For example, the ground state of the
hydrogen atom might be written as

|n = 1, l = 0,m = 0, s = 1
2 〉

or
|1, 0, 0, 1

2 〉
or even as

|the ground state of the hydrogen atom〉.
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Dirac developed this notation when he formulated quantum mechanics in the
language of ‘vector spaces’. The bras and kets form coordinate systems for two
abstract ‘Hilbert’ spaces of, in general, infinite dimensions. These ideas underlie
most advanced thinking about quantum mechanics, but we shall confine ourselves
to using Dirac notation as a notation that can be translated into whatever wave or
matrix representation is most useful for the problem in hand. To recover the wave
representation we should replace the ket by a wavefunction, and the bra by its
complex conjugate. If they appear together as in (6.30) the integration (6.28) or
matrix product (6.29) is implied. In the rest of this book, we shall use Dirac
notation sparingly, but an example of its application will be found in the section
on combining angular momenta towards the end of this chapter.

6.5 Spin–orbit coupling and the Zeeman effect

In the last chapter we showed that, classically, an electron with orbital angular
momentum l has a magnetic moment µl given by

µl = − e

2me
l (6.33)

and that the corresponding quantum-mechanical operators µ̂l and L̂ are similarly
related. There is a similar magnetic moment µs associated with electron spin
which is proportional to the spin angular momentum (s), but the constant of
proportionality in this case cannot be easily calculated and must be obtained from
experiment or from relativistic quantum theory; its value turns out to be almost
exactly twice that in the orbital case and we therefore have

µs = − e

me
s (6.34)

The orbital and spin magnetic moments separately interact with any applied
magnetic field (the Zeeman effect) and also with each other (spin–orbit coupling).
To obtain an expression for the quantum-mechanical operator representing the
spin–orbit energy, we follow the same procedure as before and calculate an
expression for the corresponding classical quantity, which we then quantize
following the procedure set out in chapter 4. We first consider the particular case
of a one-electron atom, such as hydrogen, and extend our treatment to the more
general case later.

Classically, an electron orbiting a nucleus of charge Ze ‘sees’ the nucleus
in orbit around it. Assuming the orbit to be circular and the angular velocity ω,
the electron is at the centre of a loop carrying a current equal to Zeω/2π and is
therefore subject to a magnetic field of magnitude

B = µ0 Zeω

4πr
= µ0 Ze

4πmer3
l (6.35)
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where l is, as before, the magnitude of the classical angular momentum of the
electron—i.e. l = mer2ω. This is an example of a more general expression for
the magnetic field B seen by a particle moving with velocity v in an electric field
E(r) which is

B = −v× E/c2 (6.36)

where c is the speed of light. If the potential V associated with the field E is
spherically symmetric (as in a one-electron atom) we have

E = −∂V

∂r

r
r

(6.37)

and hence

B = v× r
rc2

∂V

∂r

= − 1

mec2r

∂V

∂r
l (6.38)

In the case of a one-electron atom V (r) = Ze/(4πε0r) and (6.38) is the same as
(6.35).

If the magnetic moment associated with the electron spin is µs the energy of
interaction (W ) between it and this magnetic field is given by

W = − 1
2µs · B (6.39)

where the factor of one-half arises from a relativistic effect known as Thomas
precession, which we shall not discuss further here except to note that it has
nothing to do with the other relativistic factor of one-half mentioned in connection
with equation (6.34). Combining (6.34), (6.35) and (6.39), we get

W = µ0 Ze2

8πm2
er3

l · s (6.40)

If j is the total angular momentum l+ s then

j2 = l2 + s2 + 2l · s (6.41)

and hence, combining (6.40) and (6.41)

W = µ0 Ze2

16πm2
er3

( j2 − l2 − s2) (6.42)

We can make the transformation from classical mechanics to quantum
mechanics in the usual way by replacing the dynamical variables with appropriate
operators. In the presence of an external magnetic field of magnitude B0, which
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we assume to be in the z direction, the operator representing the interaction energy
between the spin moment and both the orbital and applied fields is Ĥ ′ where

Ĥ ′ = f (r)( Ĵ 2 − L̂2 − Ŝ2)− eB0

2me
(L̂z + 2Ŝz) (6.43)

and

f (r) = µ0 Ze2

4πm2
er3 =

−e

m2
ec2r

∂V

∂r
(6.44)

We will shortly discuss the effect of this on the energy of a one-electron
atom. We shall need to remember some of the properties of the hydrogen-atom
energy eigenfunctions we derived in chapter 3. In particular, those eigenfunctions

are also eigenfunctions of the squared total orbital angular momentum L̂2

(eigenvalue l(l + 1)}2) and its z component L̂z (eigenvalue ml}); we also note
that eigenfunctions with the same l and different ml are degenerate.

A general solution to (6.43) is a little complicated to derive, so we shall
first treat some special cases. Some readers may prefer to proceed directly to the
general treatment in section 6.6.

6.5.1 The strong-field Zeeman effect

The most straightforward case is where the second term in (6.43) is much larger
than the first, which is known as the strong-field Zeeman Effect. This means that
the effect of the applied field is much greater than the spin–orbit coupling, which
we ignore to a first approximation. In this case, simple products of eigenfunctions
of L̂z and Ŝz are clearly also eigenfunctions of Ĥ ′. The energy eigenvalues are
therefore changed by an amount equal to �E , where

�E = e}B

2me
(ml + 2ms) (6.45)

and ml and ms are the quantum numbers associated with the z components of the
orbital and spin angular momenta. Each state corresponding to given values of l
and s is therefore split into (2l+1)(2s+1) equally-spaced components, although
some of these may be accidentally degenerate. For example, if l = 1, the possible
values of ml are±1 or 0, while those of ms , are± 1

2 . Hence, (ml+2ms) can equal
±2, ±1 or 0 where the last state is doubly degenerate.

Although for typical high field strengths the spin–orbit interaction is smaller
than that representing the interaction with the field, it may not be so small that it
can be ignored completely. A further correction, δE , to each state specified by ml

and ms can be estimated by assuming that the eigenfunctions are the same as in
the absence of any spin–orbit interaction and the changes to the eigenvalues are
just the expectation values of the spin–orbit contribution to the Hamiltonian (this
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is an example of perturbation theory to be discussed in the next chapter). We get

δE = 2〈 f (r)〉〈L̂ · Ŝ〉
= 2〈 f (r)〉mlms}

2 (6.46)

where we have used the fact that 〈L̂ x 〉 = 〈L̂ y〉 = 〈Ŝx 〉 = 〈Ŝy〉 = 0 when the
system is in an eigenstate of L̂z and Ŝz .

6.5.2 Spin–orbit coupling

We now turn to the opposite extreme where the applied field is zero and we can
ignore the second term of (6.43). The first point to note is that if B0 = 0, there
is nothing to define the direction of the z axis and therefore no necessity for the
energy eigenfunctions to be eigenfunctions of L̂z or Ŝz . However, the first term

contains Ĵ 2, the squared magnitude of the total angular momentum. The energy
eigenfunctions must therefore be simultaneous eigenfunctions of Ĵ 2, L̂2 and Ŝ2,
which can, in general, be expressed as linear combinations of the eigenfunctions
of L̂z and Ŝz . At the end of the last chapter, we showed from very general
considerations that the energy levels of any total angular momentum operator
have the form j ( j + 1)}2, where j is an integer or a half integer. It follows from
this and (6.43) that the changes in the energy levels are proportional to

[ j ( j + 1)− l(l + 1)− s(s + 1)]}2

The constant of proportionality can again be estimated by assuming that the radial
part of the wavefunction is unaffected by Ĥ ′ so that the energy change, δE can
be approximated by its expectation value. (This will be more rigorously justified
in the next chapter.) We therefore have

δE = 〈 f (r)〉[ j ( j + 1)− l(l + 1)− s(s + 1)]}2 (6.47)

The allowed values of j for given l and s can be deduced from the following
physical argument, which will be made more rigorous later. We consider the two
extreme cases where the orbital angular momenta are (i) as closely parallel and
(ii) as closely antiparallel as possible, given the restrictions on j , l, and s. In the
first case, j = l+ s while in the second j = |l− s|. (This is illustrated in the case
of l = 1 and s = 1

2 in figure 6.2.) The other allowed values of j form a ladder
with integer steps between these extremes.

In the case where s equals 1
2 the possible values of j are (l + 1

2 ) and
(l − 1

2 )—unless l equals zero when j and s are identical. Thus it follows from
(6.47) that spin–orbit coupling results in all states with l �= 0 being split into
two, one member of the resulting doublet having its energy raised by an amount
proportional to l while the other is lowered by an amount proportional to (l + 1)
(see figure 6.3). States with l = 0, however, have j = s = 1

2 and are not
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Figure 6.2. The maximum (minimum) possible values of j are obtained when l and l are as
near parallel (antiparallel) as possible, given that their magnitudes must be proportional to
j ( j + 1), l(l + 1) and s(s + 1), where j , l and s are integers or half-integers. The diagram
shows the case where l = 1, s = 1

2 and j = 3
2 or 1

2 .

Figure 6.3. The effect of spin–orbit coupling on the energy levels of a one-electron atom.

split by spin–orbit coupling. We note that the quantum number m j does not
enter (6.47)—as indeed would be expected because the spherical symmetry of
the problem has not been broken—so each state with a given value of j consists
of (2 j+1) degenerate components which can be separated by an applied magnetic
field as discussed in the next section.

A familiar example of such a doublet is observed in the spectrum of sodium
and other alkali metals. The outer electron in sodium can be considered as moving
in a spherically symmetric potential resulting from the nucleus and ten inner
electrons. The well-known D lines result from transitions between states with
l = 1 and l = 0 respectively. The first of these is split into two by the spin–orbit
coupling, one component having j = 3

2 and being fourfold degenerate and the
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other having j = 1
2 and being doubly degenerate, while the second is not affected

by spin–orbit coupling and is therefore single. Transitions between the two sets
of levels therefore produce a pair of closely spaced spectral lines in agreement
with experimental observation. The difference between the frequencies of these
lines can be calculated in the way described earlier and such calculations produce
results that are in excellent agreement with experiment in every case.

Similar effects of spin–orbit coupling are observed in the spectrum of
hydrogen, but these are complicated by the fact that states with different l are
accidentally degenerate.

6.5.3 The weak-field Zeeman effect

The weak-field Zeeman effect refers to the case where the applied magnetic
field B0 is non-zero, but still so small that its contribution to the energy is
much less than that due to spin–orbit coupling. In this case, we can assume
the eigenfunctions to be effectively unchanged from the zero-field case—cf.
the arguments leading to (6.46) and (6.47). A level with a particular value of
j , l and s is split into (2 j + 1) states, each denoted by a particular value of
the quantum number, m j , associated with the z component of the total angular
momentum. The evaluation of the magnitude of the splitting in the weak-field
case is complicated by the fact that the operator representing the total magnetic
moment µ̂ = (e/2me)(L̂ + 2Ŝ) represents a vector which is not in the same
direction as the operator representing the total angular momentum—(L̂+ Ŝ) (see
figure 6.4). We shall treat this problem more rigorously later, but for the moment
use the following semi-classical argument. Referring to figure 6.4 , if j = l + s,
then for a given j, l and s, µ must lie on a cone with axis j. The average value of
µ is the average over the surface of the cone which is just the component (µ j ) of
the total magnetic moment in the direction of the total angular momentum. We
therefore have

µ j = j · µ/j

= e

2me j
j · (l+ 2s) = e

2me j
( j2 + j · s)

= ej

2me

(
1+ l · s+ s2

j2

)
= ej

2me

(
1+ j2 − l2 + s2

2 j2

)

using (6.41). The interaction energy δE is then given by Bµ j z where µ j z is the z
component of µ j . That is

δE = eB jz
2me

(
1+ j2 − l2 + s2

2 j2

)
(6.48)

We now replace the classical expressions for the magnitudes of the angular
momenta by the eigenvalues of the corresponding quantum-mechanical operators,
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Figure 6.4. The orbital and spin magnetic moments are parallel to the respective angular
momenta, but the constants of proportionality are different, so that the total magnetic
moment, µ, is not parallel to j. The vectors representing l, s, j, µl , µs and µ are shown,
assuming that they all lie in the plane of the page. However, for a given j, l and s lie on
the surfaces of the cones and, as a result, µ also lies on a cone whose axis is j. In weak
magnetic fields, the average value of µ is therefore its component parallel to j.

so that the change in energy relative to the zero-field case is given by

δE = gµBm j B (6.49)

where µB = e}/2me is the Bohr magneton (5.29) and

g = 1+ j ( j + 1)− l(l + 1)+ s(s + 1)

2 j ( j + 1)
(6.50)

is known as the Landé g-factor. We see, for example, that in the case where
s = 0, j must equal l and therefore g equals 1. This corresponds to all the
angular momentum being orbital so that the total magnetic moment is directly
proportional to the total angular momentum. This also happens if there is no
orbital angular momentum (that is, l = 0 and therefore j = s) and in this case
g = 2.
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6.6 A more general treatment of the coupling of angular
momenta

We consider two angular momenta whose squared magnitudes are represented by
the operators L̂2 and Ŝ2 and whose z components are represented by L̂z and Ŝz .
Despite this notation, our treatment is not be confined to the spin–orbit case, but
can be applied to any two coupled angular momenta. We assume that the two
angular momenta can be measured compatibly so all four operators commute.
That is,

[L̂2, L̂z] = [Ŝ2, Ŝz ] = [L̂2, Ŝ2] = [L̂2, Ŝz ]
= [L̂z, Ŝ2] = [L̂z, Ŝz] = 0 (6.51)

The four operators therefore have a common set of eigenstates, which will be
specified by the quantum numbers l, ml , s and ms , where these are all either
integers or half-integers and where −l 6 ml 6 l and −s 6 ms 6 s, as discussed
in the previous chapter. We represent the state with these quantum numbers in
Dirac notation as |l,ml , s,ms 〉 or just |ml ,ms〉. This state is therefore a direct
product of the individual eigenstates. That is,

|ml,ms〉 = |ml〉|ms〉 (6.52)

The fact that the expressions (6.52) are eigenfunctions of all four operators
follows immediately on substitution into the appropriate eigenvalue equations.

This discussion has assumed that the values of the total and z component of
both angular momenta are known. Although this condition is sometimes fulfilled
at least approximately (as in the strong-field Zeeman effect) other situations,
(such as spin–orbit coupling) often arise in which the values of the individual
z components are unknown. The quantities measured in the latter case are,
typically, the individual magnitudes whose squares are represented by L̂2 and Ŝ2

as before, along with the squared magnitude and z component of the total which
are represented by the operators Ĵ 2 and Ĵz respectively where

Ĵ 2 = |L̂+ Ŝ|2 = L̂2 + Ŝ2 + 2L̂ · Ŝ (6.53)

and
Ĵz = L̂z + Ŝz (6.54)

Clearly Ĵ 2 commutes with L̂2 and Ŝ2 and also with Ĵz , but not with L̂z or Ŝz—
these relations can be checked by substituting from (6.53) and (6.54) into the
commutation relation (5.7). It follows from the general discussion of degeneracy
at the end of chapter 4 that the operators Ĵ 2, Ĵz , L̂2 and Ŝz possess a common set
of eigenstates. We now explain how to obtain these along with the corresponding
eigenvalues.

The eigenvalues of the square of the magnitude of any angular momentum
vector and its corresponding z component were determined in the previous
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chapter, using a very general argument based only on the commutation relations
between the operators representing the components. The results of this can
therefore be applied to the present case, which means that the eigenvalues of Ĵ 2,
Ĵz , L̂2, and Ŝ2 are j ( j + 1)}2, m j}, l(l + 1)}2 and s(s + 1)}2 respectively
where j, l, s and m j are integers or half-integers and − j 6 m j 6 j . The
common eigenstates can therefore be denoted by these four quantum numbers
and represented by | j,m j , l, s〉 or | j,m j〉. To find expressions for these, we
first consider again the products |ml〉|ms〉 which were shown earlier to be
eigenfunctions of the operators L̂2, Ŝ2, L̂z and Ŝz . If we operate on these with Ĵz

we obtain, using (6.54),

Ĵz |ml〉|ms〉 = (L̂z + Ŝz)|ml〉|ms〉
= (ml + ms)}|ml〉|ms〉 (6.55)

It therefore follows that the products are also eigenfunctions of Ĵz with
eigenvalues m j} where

m j = ml + ms (6.56)

and that all such products that have the same values of l, s and m j form a
degenerate set with respect to the operators L̂2, Ŝ2 and Ĵz , but not necessarily
of Ĵ 2. Physically this means that the total z component of angular momentum
must be the sum of the two individual z components, and any allowed orientation
of L and S that satisfies this condition and has the correct value for the total
angular momentum is a possible state of the system. Remembering the general
discussion of degenerate systems at the end of chapter 4, we see that any linear
combination of these degenerate eigenfunctions is also an eigenfunction with
the same eigenvalue, so we can express the eigenfunctions of Ĵ 2 as linear
combinations of the members of this degenerate set:

| j,m j〉 =
∑

ml=−l,l

∑
ms=−s,s

C j,m j ,ml ,ms |ml〉|ms〉 (6.57)

We first consider the state where ml and ms have their maximum possible
values which are l and s respectively. There is only one product, |ml = l〉|ms =
s〉, corresponding to these quantum numbers which must therefore be the required
eigenstate in this case. Moreover, it follows from (6.56) that the corresponding
value of m j is equal to (l + s) and, as this is the maximum possible value of m j ,
it must also be equal to j . We therefore have

| j = l + s,m j = l + s〉 = |ml = l〉|ms = s〉
or

|l + s, l + s〉 = |l〉|s〉 (6.58)

We can now use the ladder operators introduced at the end of chapter 5
to obtain the state where j = l + s and m j = j − 1 from (6.58). We first
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note that it follows directly from their definition (5.32) that the ladder operators
corresponding to states of the combined angular momentum are just sums of these
corresponding to the individual angular momenta. In particular

Ĵ− = L̂− + Ŝ− (6.59)

Operating on (6.58) with Ĵ− and using (6.59) we get

Ĵ−|l + s, l + s〉 = |s〉L̂−|l〉 + |l〉Ŝ−|s〉 (6.60)

Hence, remembering the normalization results (5.53) and (5.54)

}
−1[(l + s)(l + s + 1)− (l + s)(l + s − 1)

]1/2|l + s, l + s − 1〉
= |s〉}−1[l(l + 1)− l(l − 1)

]1/2|l − 1〉
+ |l〉}−1[s(s + 1)− s(s − 1)

]1/2|s − 1〉 (6.61)

i.e.

|l + s, l + s − 1〉 =
(

l

l + s

)1/2

|l − 1〉|s〉 +
(

s

l + s

)1/2

|l〉|s − 1〉 (6.62)

There is a second state with m j = l + s − 1. It must have a different value
of j and the only possibility is l + s − 1. To be orthogonal to |l + s, l + s − 1〉, it
must have the form

|l + s − 1, l + s − 1〉 =
(

s

l + s

)1/2

|l − 1〉|s〉 −
(

l

l + s

)1/2

|l〉|s − 1〉 (6.63)

A further application of Ĵ− to the states given in (6.62) and (6.63) produces
expressions for the states |l+ s, l+ s−2〉 and |l+ s−1, l+ s−2〉; an expression
for the state |l+s−2, l+s−2〉 is found using orthogonality—cf. (6.63). We note,
however, that some of these states will be absent if l or s is less than 2. In general,
the process can be continued by further applications of Ĵ−, which create states of
smaller m j , and adding in an additional value of j each time using orthogonality
until the minimum value of j (i.e. |l − s|) is reached. Further applications of
Ĵ− reduce m j further with values of j now being successively eliminated until
m j has its minimum value of − j . At this point there is again only one state :
|l + s,−l − s〉. An entirely equivalent procedure is to start with this state and
apply the raising operator Ĵ+ until m j = j .

Table 6.2 shows the results of applying this procedure to the particular case
where l = 1 and s = 1

2 . The second row is obtained by substituting into (6.62)

and the third and fourth by further applications of Ĵ−. The fifth row is obtained
by substituting into (6.63), while the sixth is obtained from the fifth by applying
Ĵ−.
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Table 6.2. Clebsch–Gordan coefficients for the case l = 1 and s = 1
2 . Eigenfunctions

of the total angular momentum with given values of ( j,m j ) are constructed as linear
combinations of products of the angular momentum eigenfunctions denoted by the values
of (ml ,ms ).

(ml ,ms )

( j,m j ) (1, 1
2 ) (1,− 1

2 ) (0, 1
2 ) (0,− 1

2 ) (−1, 1
2 ) (−1,− 1

2 )

( 3
2 ,

3
2 ) 1 0 0 0 0 0

( 3
2 ,

1
2 ) 0 1√

3
2√
3

0 0 0

( 3
2 ,− 1

2 ) 0 0 0 2√
3

1√
3

0

( 3
2 ,− 3

2 ) 0 0 0 0 0 1

( 1
2 ,

1
2 ) 0

√
2
3 − 1√

3
0 0 0

( 1
2 ,− 1

2 ) 0 0 0 − 1√
3

√
2
3 0

The process gets very complex for large quantum numbers, and it is easier
to look up the results in a reference text or via the internet. Once the Clebsch–
Gordan coefficients have been determined, they can be used to construct a matrix
representation of the energy operator from which the energy eigenvalues can be
obtained. We will describe this for the case of the Hamiltonian operator given in
(6.43) which we re-write as

Ĥ ′ ≡ Ĥ ′(1) + Ĥ ′(2)

= 〈
f (r)

〉
( Ĵ 2 − L̂2 − Ŝ2)− eB0

2me
(L̂z + 2Ŝz) (6.64)

the expectation value being taken over the radial coordinate only. Using the states
| j,m j〉 as a basis, we calculate the matrix elements

H ′
( j,m j ),( j ′,m′j )

= H ′(1)
( j,m j),( j ′,m′j )

+ H ′(2)
( j,m j),( j ′,m′j )

= 〈
f (r)

〉〈 j,m j |( Ĵ 2 − L̂2 − Ŝ2)| j ′,m′j 〉
− eB0

2me
〈 j,m j |(L̂z + 2Ŝz)| j ′,m′j 〉 (6.65)

| j,m j〉 is an eigenstate of ( Ĵ 2− L̂2− Ŝ2) with eigenvalue [ j ( j + 1)− l(l + 1)−
s(s+1)]}2, so it follows (remembering orthogonality) that the first term in (6.65)
contributes only to the diagonal elements of the matrix and we have

H ′(1)
( j,m j ),( j ′,m′j )

= 〈
f (r)

〉[ j ( j + 1)− l(l + 1)− s(s + 1)]δ j, j ′δm j ,m′j (6.66)
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Table 6.3. The matrix representing Ĥ ′ in the case where l = 1 and s = 1
2 . ε = 〈 f (r)〉}2

and µB = e}/2me .

( j,m j )

( j,m j ) ( 3
2 ,

3
2 ) ( 3

2 ,− 1
2 ) ( 3

2 ,− 1
2 ) ( 3

2 ,− 3
2 ) ( 1

2 ,
1
2 ) ( 1

2 ,− 1
2 )

( 3
2 ,

3
2 ) ε − 2µB B 0 0 0 0 0

( 3
2 ,

1
2 ) 0 ε − 2

3µB B 0 0
√

2
3 µB B 0

( 3
2 ,− 1

2 ) 0 0 ε + 2
3µB B 0 0

√
2

3 µB B

( 3
2 ,− 3

2 ) 0 0 0 ε + 2µB B 0 0

( 1
2 ,

1
2 ) 0

√
2

3 µB B 0 0 −2ε − 1
3µB B 0

( 1
2 ,− 1

2 ) 0 0
√

2
3 µB B 0 0 −2ε + 1

3µB B

We evaluate the second term by expressing the states | j,m j〉 in terms of the
products |ml〉|ms〉 using Clebsch–Gordan coefficients as described earlier, and
get

H ′(2)
( j,m j ),( j ′,m′j )

= − eB

2me

∑
ml ,ms

C∗( j,m j )(ml ,ms)
〈ms |〈ml |(L̂z + 2Ŝz)

×
∑

m′l ,m′s

C( j ′,m′j )(m′l ,m′s)|m′l〉|m′s〉

= − eB

2me

∑
(ml ,ms )(m′l ,m′s)

C∗( j,m j )(ml,ms )
C( j ′,m′j )(m′l ,m′s )

× 〈ml |〈ms |(L̂z + 2Ŝz)|m′l〉|m′s〉 (6.67)

We can now use the fact that |ml〉 and |ms〉 are eigenstates of L̂z and Ŝz

respectively, along with orthogonality to get

H ′(2)
( j,m j ),( j ′,m′j )

= −e}B

2me

∑
ml ,ms

C∗( j,m j )(ml ,ms)
C( j ′,m′j )(ml ,ms)(ml + 2ms) (6.68)

(6.66) and (6.68) can be combined to form the complete Hamiltonian matrix,
which can then be diagonalized to obtain the energy eigenvalues. Following this
procedure and using the Clebsch–Gordan coefficients in table 6.2, we get a matrix
whose elements are listed in table 6.3 for the case where l = 1 and s = 1

2 .
We can check that this gives the same answers as those we obtained in the

limits of large and small field discussed earlier. Considering the zero-field case
first, we see that the matrix in table 6.3 becomes diagonal when B = 0; the four
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Figure 6.5. The splitting �E of the states with l = 1 in a one-electron atom as a function
of applied magnetic field. Energy is in units of ε and the field is in units of ε/µB .

states with j = 3
2 all have spin–orbit energies equal to ε, while the two with

j = 1
2 have spin–orbit energies of −2ε, agreeing with (6.47) and figure 6.3.

The strong-field limit corresponds to ε = 0 in table 6.3; the matrix now
factorizes into two 1×1 matrices where the Zeeman energies are±2µB B , and two
2×2 matrices whose eigenvalues can be straightforwardly shown to be±µB B and
zero. These results are exactly what we obtained earlier—(6.45). One advantage
of the general formulation is that the calculation can be made for any values of
ε and µB , and figure 6.5 shows the results of an evaluation of the eigenvalues of
Ĥ ′ for a wide range of fields.

Although we have considered only a few comparatively simple examples,
the principles underlying the addition of angular momenta have wide application.
For example, similar techniques can be applied to the problem of the coupling
of the orbital and spin angular momenta of many-electron atoms when detailed
calculations show that this can often be considered as a two-stage process: first the
orbital and spin angular momenta of the different electrons separately combine to
form total orbital and spin vectors; then these two quantities interact in a similar
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way to that described earlier in the case of one-electron atoms. Such a system
is described as Russell–Saunders or L–S coupling, and provides a satisfactory
account of the atomic spectra of atoms with low atomic number. Heavy elements,
however, are better described by ‘ j– j coupling’ in which the orbital and spin
angular momenta of each electron interact strongly to form a total described by the
quantum number j . The totals associated with different electrons then combine
together to form a grand total for the atom.

The application of many of the ideas discussed in this chapter and the last
to the fields of nuclear and particle physics are also of great importance. This
is not only due to the importance of angular momentum in these systems, but
also because other physical quantities turn out to be capable of representation
by a set of operators obeying the same algebra as do those representing angular
momentum components. An example of this is the quantity known as isotopic
spin. Using this concept the proton and neutron can be described as separate states
of the same particle, assuming that the total isotopic-spin quantum number is 1

2 so
that its ‘z component’ can be represented by a quantum number having the values
1
2 and − 1

2 . Properties such as the charge and mass differences between the two
states can then be treated as resulting from isotopic-spin-dependent interactions
between the three quarks that constitute the nucleon. It is also found that excited
states of the nucleon whose properties can be explained by assigning appropriate
values to the two isotopic-spin quantum numbers exist.

Problems

6.1 Show that the Hermitian matrices

[x] =
(

1

2

}

mω

)1/2




0 1 0 0 · · ·
1 0

√
2 0 · · ·

0
√

2 0
√

3 · · ·
0 0

√
3 0 · · ·

· · · · · · ·
· · · · · · ·




and

[P] =
(

1

2
mω}

)1/2




0 −i 0 0 · · ·
i 0 −i/

√
2 0 · · ·

0 i
√

2 0 −i
√

3 · · ·
0 0 i

√
3 0 · · ·

· · · · · · ·
· · · · · · ·




obey the correct commutation rules for position and momentum in one dimension. Show that these
can be used to obtain the energy levels of a harmonic oscillator of classical frequency ω and compare
your answers with those obtained in chapter 2.

6.2 Calculate the expectation values 〈Ŝx 〉, 〈Ŝy〉, 〈Ŝ2
x 〉, and 〈Ŝ2

y〉 for a spin-half particle known to be in

an eigenstate of Ŝz . Show that the product 〈Ŝ2
x 〉〈Ŝ2

y 〉 is consistent with the uncertainty principle.

6.3 Obtain matrices representing the raising and lowering operators in the case of a spin-half system.
Verify that these have the general properties attributed to ladder operators in chapter 5.

6.4 A spin-half particle, initially in an eigenstate of Ŝx with eigenvalue 1
2}, enters a Stern–Gerlach

apparatus oriented to measure its angular momentum component in a direction whose orientation with
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respect to the x and z axes is defined by the spherical polar angles θ and φ. Obtain expressions for the
probabilities of obtaining the results + 1

2} and − 1
2} from the second measurement.

6.5 Spin-half particles, initially in an eigenstate of Ŝz with eigenvalue 1
2}, are directed into a Stern–

Gerlach apparatus oriented to measure the x component of spin. The lengths of the two possible paths
through the second apparatus are precisely equal and the particles are then directed into a common
path so that it is impossible to tell which route any particular particle followed. What result would you
expect to obtain if the z component of the particle spin is now measured? Discuss this from the point
of view of the quantum theory of measurement and compare your discussion with that of the two-slit
experiment discussed in chapter 1.

6.6 Show that the following matrices obey the appropriate commutation rules and have the correct
eigenvalues to represent the three components of angular momentum of a spin-one particle:

[Lx ] = }√
2


0 1 0

1 0 1
0 1 0


 [L y ] = }√

2


0 −i 0

i 0 −i
0 i 0


 [Lz ] = }


1 0 0

0 0 0
0 0 −1




Verify that the corresponding matrix representing the square of the total angular momentum also has
the correct eigenvalues.

6.7 Obtain the eigenvectors of the matrices given in problem 6.6 and use these to find the relative
probabilities of the possible results of the measurement of the x component of spin on a spin-one
particle initially in an eigenstate of Sz with eigenvalue }.

6.8 Discuss the splitting of the l = 2 state of a one-electron atom due to (i) spin–orbit coupling, (ii)
the strong-field Zeeman effect and (iii) the weak-field Zeeman effect.



Chapter 7

Time-independent perturbation theory and
the variational principle

Throughout our discussion of the general principles of quantum mechanics we
have emphasized the importance of the eigenvalues and eigenfunctions of the
operators representing physical quantities. However, we have seen that solving
the basic eigenvalue equations determining these is often not straightforward. In
the early chapters discussing the energy eigenvalue equation (or time-independent
Schrödinger equation) for example, we found that this could often not be
solved exactly and that, even when a solution was possible, it frequently
required considerable mathematical analysis. Because of this, methods have been
developed to obtain approximate solutions to eigenvalue equations. One of the
most important of such techniques is known as time-independent perturbation
theory and will be the first method to be discussed in the present chapter. Another,
known as the variational principle, will be discussed later. We shall confine our
discussion to the particular case of the energy eigenvalue equation and use the
wavefunction representation, but we shall re-state some of the important results
in Dirac notation so that they can be readily transformed to a matrix equation if
desired.

Perturbation theory can be applied when the Hamiltonian operator Ĥ ,
representing the total energy of the system, can be written in the form

Ĥ = Ĥ0 + Ĥ ′ (7.1)

where the eigenvalues E0n and eigenfunctions u0n of Ĥ0 are assumed to be known
and the operator Ĥ ′ represents an additional energy known as a perturbation,
which is in some sense small compared with Ĥ0. Thus if we know the solution to a
problem described by Ĥ0 (for example the energy eigenvalues and eigenfunctions
of the hydrogen atom) we can use perturbation theory to obtain approximate
solutions to a related problem (such as the energy eigenvalues and eigenfunctions
of a hydrogen atom subject to a weak electric field). We shall use (7.1) along with

134
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the eigenvalue equation for the unperturbed system

Ĥ0u0n = E0nu0n (7.2)

to express the eigenvalues and eigenfunctions of Ĥ in the form of a series,
the leading (zero-order) term of which is independent of Ĥ ′ while the next
(first-order) term contains expressions linear in Ĥ ′ and so on; a similar series
is also obtained for the energy eigenfunctions. The mathematical complexity
of the series increases rapidly with ascending order, and perturbation theory is
generally useful only if the series converges rapidly—which usually means that
the additional energy due to the perturbation is much smaller than the energy
difference between typical neighbouring levels. Accordingly, we shall confine
our treatment to obtaining expressions for the eigenvalues of Ĥ which are correct
to second order in Ĥ ′ as well as first-order corrections to the eigenfunctions. We
shall illustrate the perturbation method by considering its application to several
physical problems.

7.1 Perturbation theory for non-degenerate energy levels

We first consider the effect of perturbations on energy levels that are not
degenerate and return to the degenerate case later. We assume that the correct
eigenvalues and eigenfunctions of Ĥ can be expressed as a series whose terms are
of zeroth, first, second, etc., order in the perturbation Ĥ ′, and derive expressions
for each of these in turn. This can be done most conveniently if we rewrite (7.1)
in the form

Ĥ = Ĥ0 + β Ĥ ′ (7.3)

where β is a constant, and obtain results that are valid for all values of β, including
the original case where β = 1. It is important to note that β is not assumed to be
small, but first, second etc. order corrections are identified as terms in β, β2, etc.
The series for En and un are written as

En = E0n + βE1n + β2 E2n + · · ·
un = u0n + βu1n + β2u2n + · · ·

}
(7.4)

where the terms independent of β are known as zeroth-order terms, those in β are
first-order, those in β2 second-order, and so on. We substitute these expressions
into the energy eigenvalue equation

Ĥun = Enun (7.5)

and obtain

(Ĥ0 + β Ĥ ′)(u0n + βu1n + β2u2n + · · · )
= (E0n + βE1n + β2 E2n + · · · )(u0n + βu1n + β2u2n + · · · ) (7.6)
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Expanding this equation and equating the coefficients of the different powers of
β we get

Ĥ0u0n = E0nu0n (7.7)

Ĥ ′u0n + Ĥ0u1n = E0nu1n + E1nu0n (7.8)

Ĥ ′u1n + Ĥ0u2n = E0nu2n + E1nu1n + E2nu0n (7.9)

We note first that (7.7) is identical to (7.2) which is to be expected as the former
refers to a perturbation of zero order and the latter describes the unperturbed
system. We can obtain expressions for the first-order corrections from (7.8)
by expressing u1n as a linear combination of the complete set of unperturbed
eigenfunctions u0k :

u1n =
∑

k

anku0k (7.10)

Substituting (7.10) into (7.8) gives, after rearranging and using (7.7),

(Ĥ ′ − E1n)u0n =
∑

k

ank(E0n − E0k)u0k (7.11)

We now multiply both sides of (7.11) by u∗0n and integrate over all space, using
the fact that the u0k are orthonormal to get

E1n = H ′
nn (7.12)

where

H ′
nn =

∫
u∗0n Ĥ ′u0n dτ ≡ 〈0n|Ĥ ′|0n〉 (7.13)

We have therefore obtained an expression for the first-order correction to the
energy eigenvalues of the perturbed system in terms of the perturbation operator
H ′ and the eigenfunctions of the unperturbed system, which are assumed to
be known. We note that this first-order correction to the energy is just the
expectation value of the perturbation operator, calculated using the unperturbed
eigenfunctions. We can now obtain an expression for the first-order correction to
the eigenfunction by multiplying both sides of (7.11) by u∗0m (where m �= n) and
again integrate over all space when we get (again using orthonormality)

anm = H ′
mn

E0n − E0m
m �= n (7.14)

where H ′
mn is defined by a similar equation to (7.13) with u∗0n replaced by u∗0m

and is therefore a matrix element (cf. chapter 6). Hence, using (7.4) and (7.10),

un = (1+ ann)u0n +
∑
k �=n

H ′
kn

E0n − E0k
u0k + higher order terms (7.15)
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We shall now show that ann can be put equal to zero. To do this we note that
(7.15) must be normalized. That is

1 =
∫

u∗nun dτ

=
∫ [

(1+ a∗nn)u
∗
0n +

∑
k �=n

a∗nku∗0k

][
(1+ ann)u0n +

∑
k �=n

anku0k

]
dτ

Remembering again that the u0k are orthonormal and retaining only first-order
terms we get

1+ a∗nn + ann = 1

Hence
ann = −a∗nn (7.16)

and ann is therefore an imaginary number which we can write as iγn where γn is
real. Hence

1+ ann = 1+ iγn � exp(iγn)

where the final equality is correct to first order as is (7.15). It follows that the
factor (1+ann) in the first term of (7.15) is equal to exp(iγn) to first order and the
effect of this is simply to multiply u0n by a phase factor. Referring to (7.13) we
see that the first-order change in the energy eigenvalue is independent of the phase
of u0n and from (7.15) we see that the value of γn affects only the overall phase
of the eigenfunction—at least as far as zero- and first-order terms are concerned.
But we know that the absolute phase of an eigenfunction is arbitrary, so there is no
loss of generality involved if we put γn = 0, leading to the following expression
for the eigenfunction which is correct to first order:

un = u0n +
∑
k �=n

H ′
kn

E0n − E0k
u0k (7.17)

or, in Dirac notation,

|n〉 = |0n〉 +
∑
k �=n

〈0n|Ĥ ′|0n〉
E0n − E0k

|0k〉 + higher order terms (7.18)

Proceeding now to consider second-order terms, we first expand u2n in terms
of the unperturbed eigenfunctions

u2n =
∑

k

bnku0k (7.19)

and then substitute from (7.7), (7.10) and (7.19) into (7.9) which gives, after some
rearrangement,∑

k

bnk(E0k − E0n)u0k +
∑

k

ank(Ĥ ′ − E1n)u0k = E2nu0n (7.20)
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Multiplying (7.20) by u∗0n and integrating over all space leads to

E2n =
∑
k �=n

ank H ′
nk

=
∑
k �=n

H ′
kn H ′

nk

E0n − E0k

=
∑
k �=n

|H ′
kn|2

E0n − E0k
(7.21)

where we have used (7.14) and the relation H ′
kn = H ′∗

nk , which follows from the

definition of the matrix element and the fact that Ĥ ′ is a Hermitian operator. This
procedure can be continued to obtain expressions for the second-order change in
the eigenfunction as well as higher-order corrections to both the eigenfunctions
and the eigenvalues. However, the expressions rapidly become more complicated
and if the perturbation series does not converge rapidly enough for (7.12), (7.17)
and (7.21) to be sufficient, it is usually better to look for some other method of
solving the problem.

Example 7.1 The anharmonic oscillator We consider the case of a particle of
mass m subject to a one-dimensional potential V (x) where

V = 1
2 mω2x2 + γ x4 (7.22)

and we wish to calculate the energy of the ground state to first order in γ . If γ

were zero, the potential would correspond to a harmonic oscillator of classical
frequency ω whose energy levels were shown in chapter 2 to be

E0n = (n + 1
2 )}ω (7.23)

The corresponding ground-state energy eigenfunction was also evaluated in
chapter 2 as

u00 =
(mω

π}

)1/4
exp

(
−mω

2}
x2

)
(7.24)

The inclusion of the term γ x4 in the potential (7.22) changes the problem from
a harmonic oscillator to an anharmonic oscillator. If γ is small, we can apply
perturbation theory and the first-order correction to the ground-state energy is
obtained by substituting from (7.24) into (7.12) giving

E10 =
(mω

π}

)1/2
∫ ∞

−∞
γ x4 exp

(
−mω

}
x2

)
dx

= 3}2

4m2ω2
γ (7.25)
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Table 7.1. The ground-state energy of an anharmonic oscillator calculated using first-order
perturbation theory (E01) and by numerical methods (E0).

g = 2}γ

m2ω3
E01/(

1
2}ω) E0/(

1
2}ω)

0.01 1.007 50 1.007 35
0.1 1.075 1.065
0.2 1.15 1.12

which, along with the zero-order term 1
2}ω, constitutes the required expression for

the ground-state energy. If we characterize the ‘strength’ of the perturbation by
the dimensionless quantity g defined as g = (2}/m2ω3)γ , it follows from (7.23)
and (7.25) that the ratio of the first-order correction to the unperturbed energy is
just 3g/4. The perturbed energies calculated in this way are shown in table 7.1 for
several values of g, along with values of the total energy (as a fraction of 1

2}ω)
calculated by solving the Schrödinger equation numerically with the potential
(7.22). We see that when the total correction to the zero-order energy is around
1%, the error involved in using first-order perturbation theory is less than 0.02%
of the total, and that the approximation is still correct to about 3% when the total
correction is about 20%.

Example 7.2 The atomic polarizability of hydrogen The d.c. polarizability
of an atom α is defined by the equation µ = αε0E where µ is the electric
dipole moment induced by a steady uniform electric field E . We shall consider
a hydrogen atom in its ground state for which the wavefunction is spherically
symmetric so that the direction of the z axis can be chosen as parallel to the
field. A field of magnitude E in this direction will contribute an extra term, Ĥ ′,
to the Hamiltonian which can be treated as a perturbation. Thus from elementary
electrostatics

Ĥ ′ = eEz (7.26)

where z is the coordinate of the electron with respect to the proton at the origin.
Substituting from (7.26) into (7.17), the ground-state eigenfunction u0 is given by

u0 = u00 + eE
∑
k �=0

zk0

E00 − E0k
u0k (7.27)

Classically, if the electron were at a position r with respect to the nucleus, the
atom would have a dipole moment µ where µ = −er. It follows that the quantum-
mechanical operator representing the dipole moment has the same form and the
expectation value of its z component is therefore 〈µ〉 where

〈µ〉 = −e
∫

u∗0zu0 dτ
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and the components in the x and y directions clearly vanish from symmetry
considerations. Using (7.27) we have

〈µ〉 = −e
∫

u∗00zu00 dτ + 2e2
E

∑
k �=0

|zk0|2
E0k − E00

(7.28)

to first order in E , remembering that z∗k0 = z0k . The first term on the right-
hand side of (7.28) vanishes because u00 is spherically symmetric and z is an odd
function, so it follows that the atomic polarizability, α, is given by

α = 2e2

ε0

∑
k �=0

|zk0|2
E0k − E00

(7.29)

An alternative derivation which yields an identical expression to (7.29)
consists of considering the perturbation expression for the energy: the first-
order contribution (7.13) is proportional to z00 and is therefore zero on symmetry
grounds, and the second-order term (7.21) is proportional to E2. The latter is then
compared with the energy of an induced dipole in the applied field which equals
− 1

2αε0E
2.

The summation in (7.29) is over all the excited states of the hydrogen atom
(including the continuum of unbound states) and considerable computational
effort would be required to evaluate it exactly. However, we can calculate a
maximum possible value or ‘upper bound’ for α using what is known as the
Unsöld closure principle. In this case we replace each energy difference E0k−E00
in (7.29) by its smallest possible value, which is clearly the difference between
the ground and first excited energy levels. Writing this quantity as �E we get

ε0α 6
2e2

�E

∑
k �=0

|zk0|2

= 2e2

�E

(∑
k

z0kzk0 − |z00|2
)

(7.30)

As previously mentioned, the second term in (7.30) vanishes for symmetry
reasons. To evaluate the first term we refer back to the discussion of matrix
representations in chapter 6, from which it follows that the quantities z0k

constitute the elements of a matrix representing the operator z. If we now apply
the standard rules for multiplying matrices we see that the first term in (7.30) is
equal to the leading diagonal element of a similar matrix representing the operator
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z2. Hence

∑
k

z0kzk0 = (z2)00 =
∫

u∗00z2u00 dτ

= 1

πa2
0

∫ 2π

0

∫ π

0

∫ ∞

0
exp

(
−2r

a0

)
r4 cos2 θ sin θ dr dθ dφ

= a2
0 (7.31)

where we have used spherical polar coordinates and the standard expression for
the ground-state eigenfunction (cf. (3.70)).

The energy difference �E is obtained from the expressions (3.72) for the
energy levels of the hydrogen atom

�E = 3e2

8(4πε0)a0
(7.32)

Substituting from (7.31) and (7.32) into (7.30) we get

α 6 64πa3
0/3

= 67.02a3
0 (7.33)

This maximum value is within 15% of the experimental value of 57.8a3
0. Because

the upper bound can be evaluated using only the ground-state eigenfunction and
the difference between the energies of the two lowest states, this approximation
can be usefully applied to the calculation of polarizabilities of other systems, even
where the full set of matrix elements and energy differences are not known and
expressions such as (7.29) cannot be evaluated. Moreover, as we shall see later in
this chapter, the variational principle can often be used to generate a lower bound
to α so that by combining both methods, a theoretical estimate can be made with
a precision that is rigorously known.

7.2 Perturbation theory for degenerate levels

The application of perturbation theory to degenerate systems can often lead to
powerful insights into the physics of the systems considered. This is because
the perturbation often ‘lifts’ the degeneracy of the energy levels, leading to
additional structure in the line spectrum. We saw examples of this in chapter 6
where the inclusion of a spin–orbit coupling term split the previously degenerate
energy levels (figure 6.3) and further splitting resulted from the application of
magnetic fields (figure 6.5). We shall now develop a general method for extending
perturbation theory to such degenerate systems.

The mathematical reason why we cannot apply the theory in the form
developed so far to the degenerate case follows from the fact that if one or
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more of the energy levels E0k in (7.15) is equal to E0n then at least one of the
denominators (E0n− E0k) in (7.15) would be zero, leading to an infinite value for
the corresponding term in the series. To understand the reason why this infinity
arises, we consider the case of twofold degeneracy and take u01 and u02 to be
two eigenfunctions of the unperturbed Hamiltonian Ĥ0 with eigenvalue E01. It is
important to remember (see the discussion of degeneracy in chapter 4) that any
linear combination of u01 and u02 is also an eigenfunction of H0 with the same
eigenvalue, so that if we had solved the unperturbed problem in a different way we
could well have come up with a different pair of eigenfunctions. Suppose that a
small perturbation Ĥ ′ is applied and that as a result we have two states of slightly
different energy whose eigenfunctions are v1 and v2; because the system is no
longer degenerate, linear combinations of these are not energy eigenfunctions.
Now imagine we remove the perturbation gradually. As it tends to zero, v1 and v2
will tend to eigenfunctions of the unperturbed system; let these be u′1 and u′2. In
general u′1 and u′2 will be different from u1 and u2, although the former quantities
will of course be linear combinations of the latter. Hence, if we start from u1 and
u2 the application of a very small perturbation has to produce large changes in the
eigenfunctions to get us to v1 and v2. This is why the infinite terms appear in the
perturbation series.

The way out of this apparent impasse is to use other methods to obtain the
correct starting functions u′1 and u′2. Referring back to (7.11) we see that, if u01
is one of a degenerate pair whose other member is u02, then the coefficient a12 on
the right-hand side is indeterminate (because E01 = E02) and the infinity arises
later in the derivation when we divide through by E01 − E02 which equals zero.
However, the correct zero-order eigenfunction must be some linear combination
of u01 and u02 which we can write as

v0 = C1u01 + C2u02 (7.34)

where the constants C1 and C2 are to be determined. Using this in place of u01,
the equivalent equation to (7.11) becomes

(Ĥ ′ − E1)(C1u01 + C2u02) =
∑

k

a1k(E01 − E0k)u0k (7.35)

where the first-order correction to the energy of the degenerate states is now
written as E1. We now multiply both sides of (7.35) by u∗01 and integrate over all
space, then repeat the process using u∗02 to obtain the following pair of equations:

(H ′
11 − E1)C1 + H ′

12C2 = 0

H ′
21C1 + (H ′

22 − E1)C2 = 0

}
(7.36)

where we have assumed that u01 and u02 are orthogonal because it was shown
in chapter 4 that, although degenerate eigenfunctions need not be orthogonal,
an orthogonal set can always be generated using Schmidt orthogonalization.
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Equations (7.36) have a non-trivial solution if, and only if, the determinant of
the coefficients is zero: ∣∣∣∣H ′

11 − E1 H ′
12

H ′
21 H ′

22 − E1

∣∣∣∣ = 0 (7.37)

The solution of (7.37) leads to two possible values for E1. Substituting these
into (7.36), and using the condition that the zero-order eigenfunction must be
normalized, leads to two sets of values for the coefficients C1 and C2. Thus we
have found two zero-order functions, v01 and v02 that are linear combinations of
u01 and u02 and which, in general, correspond to different first-order corrections
to the energy. Hence, as we expected, one effect of the perturbation may be to
remove the degeneracy. These two linear combinations represent the appropriate
choice of zero-order eigenfunctions for the problem and they can be used, along
with the unperturbed eigenfunctions for the other states, to evaluate higher-order
corrections in a similar way to the non-degenerate case. Note that diagonalizing
the matrix in (7.37) means that the matrix element

∫
v∗01 Ĥ ′v02 = 0, and the

infinite terms in the expansion have been removed.
This discussion has been confined to the case of twofold degeneracy, but

the extension to the general (say M-fold) case is quite straightforward. The
correct zero-order eigenfunctions, v0m can be written as linear combinations of
the original eigenfunctions u0k according to

v0m =
M∑

k=1

Cmku0k (7.38)

and the first-order corrections to the energy are obtained from the determinantal
equation ∣∣∣∣∣∣∣∣∣

H ′
11 − E1 H ′

12 · · · H ′
1M

H ′
21 H ′

22 − E1 · · · H ′
2M

...
...

...

H ′
M1 H ′

M2 · · · H ′
M M − E1

∣∣∣∣∣∣∣∣∣
= 0 (7.39)

The coefficients Cmk are obtained by substituting the resulting values of E1 into
the generalized form of (7.36) and applying the normalization condition. Once
the appropriate set of unperturbed eigenfunctions has been found, higher-order
corrections can be applied, just as in the non-degenerate case. However, in many
cases, the results of physical interest emerge from the first-order treatment just
described.

7.2.1 Nearly degenerate systems

Cases sometimes arise where the unperturbed energies of two or more states are
nearly, but not exactly equal. This means that, although the relevant terms in the
perturbation expansion are not infinite, they can be very large and the perturbation
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series does not converge rapidly, if at all. However, the procedures just described
are valid only if the states are actually degenerate.

We will show that a procedure similar to that for the fully degenerate case
can be applied in the nearly-degenerate situation. Although perturbation theory
cannot be directly applied, we can be guided by the perturbation approach. If we
re-examine the procedure described earlier, we see this amounts to using a matrix
representation for the part of the system that is described by the states u1 and u2.
In the degenerate case, we can do this using the perturbation Ĥ ′ only because the
unperturbed energies of the two states are equal, but in the more general case, we
must use the whole Hamiltonian, Ĥ = Ĥ0 + Ĥ ′. Instead of (7.36) we get

(H11 − E)C1 + H12C2 = 0

H21C1 + (H22 − E)C2 = 0

}
(7.40)

where

H11 =
∫

u∗1(Ĥ0 + Ĥ ′)u1 dτ = E01 + H ′
11

and

H12 =
∫

u∗1(Ĥ0 + Ĥ ′)u2 dτ = H ′
12

with similar expressions for H21 and H22
The equivalent of (7.36) is then

(H ′
11 + E01 − E)C1 + H ′

12C2 = 0

H ′
21C1 + (H ′

22 + E02 − E)C2 = 0

}
(7.41)

The similarity to the fully degenerate case is emphasized, if we express E01
and E02 in terms of the average energy Ē0 = 1

2 (E01 + E02) and the difference
�E0 = (E01−E02); we also define E1 so that E = Ē0+E1. (7.41) then becomes

(H ′
11 + 1

2�E0 − E1)C1 + H ′
12C2 = 0

H ′
21C1 + (H ′

22 − 1
2�E0 − E1)C2 = 0

}
(7.42)

which is identical to (7.36) in the fully degenerate case, when �E0 = 0. Once
the solutions to (7.42) have been obtained, further corrections can be found using
the procedure for non-degenerate systems.

This procedure can be extended to systems where more than two states
are nearly degenerate. The criterion for near-degeneracy is that the difference
between the unperturbed energies is less than the magnitude of the matrix element
connecting them. That is

�E2
0 < |H ′

12|2 = H ′
12H ′

21 (7.43)

An example of a nearly degenerate system is the one-dimensional metal
discussed in example 7.4.
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Example 7.3 The Stark effect in hydrogen The effect of applying an electric
field to the hydrogen atom in its ground state was discussed earlier in this chapter
where we showed that there was no first-order change in the energy of this state.
We now consider the first excited state which is fourfold degenerate1 in the
absence of any perturbation and we shall find that this level is split into three
when an electric field is applied. This is known as the Stark effect.

The four degenerate states corresponding to the unperturbed first
excited state of hydrogen all have quantum number n equal to 2 and
the eigenfunctions, referred to spherical polar coordinates (r, θ, φ), are—cf.
chapter 3, equation (3.70) with z = 1:

u1 ≡ u200 = (8πa3
0)
−1/2(1− r/2a0)e

−r/2a0

u2 ≡ u210 = (8πa3
0)
−1/2(r/2a0) cos θe−r/2a0

u3 ≡ u211 = −(πa3
0)
−1/2(r/8a0) sin θeiφe−r/2a0

u4 ≡ u21−1 = (πa3
0)
−1/2(r/8a0) sin θe−iφe−r/2a0




(7.44)

The perturbation due to the applied field (assumed as usual to be in the z direction)
is represented by Ĥ ′ where—cf. (7.26)

Ĥ ′ = eEz = eEr cos θ (7.45)

If we now proceed to evaluate the matrix elements we find that most of them
vanish because of symmetry. Thus H ′

11 = H ′
22 = H ′

33 = H ′
34 = H ′

43 = H ′
44 = 0

because in each case the integrand is antisymmetric in z, and H ′
13 = H ′

14 = H ′
23 =

H ′
24 = H ′

31 = H ′
32 = H ′

41 = H ′
42 = 0 because these integrands all contain the

factor eiφ and the integration with respect to φ is from φ = 0 to φ = 2π . This
leaves only the matrix elements H ′

12 and H ′
21 which are given by

H ′
12 = H ′

21

=
∫ 2π

0

∫ π

0

∫ ∞

0
(8πa3

0)
−1(r/2a0)(1− r/2a0)

× eEr cos2 θe−r/a0r2 dr sin θ dθ dφ

= eE

8a4
0

∫ π

0
cos2 θ sin θ dθ

∫ ∞

0
(r4 − r5/2a0)e

−r/a0 dr

= −3eEa0 (7.46)

The determinantal equation (7.39) therefore becomes∣∣∣∣∣∣∣∣
−E1 −3eEa0 0 0
−3eEa0 −E1 0 0

0 0 −E1 0
0 0 0 −E1

∣∣∣∣∣∣∣∣
= 0 (7.47)

1 For the purposes of this discussion we shall assume that the perturbation associated with the applied
electric field is much larger than the splitting resulting from spin–orbit coupling discussed in the
previous chapter so that the latter effect can be ignored.
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Figure 7.1. A section at y = 0 through the position probability distribution corresponding
to the n = 2 energy state of a hydrogen atom subject to an electric field in the z
direction. (A number of contours have been omitted in the high peaks represented by
the cross-hatched areas.)

leading to the following expressions for the first-order corrections to the energy
and for the zero-order eigenfunctions—making use of the generalized form
of (7.36)

E1 = 3eEa0 v1 = 1√
2
(u1 − u2)

E1 = −3eEa0 v2 = 1√
2
(u1 + u2)

E1 = 0 v3 = u3 and v4 = u4




(7.48)

We should note several points about these results. First, the degeneracy of the last
two states has not been lifted by the perturbation so any linear combination of u3
and u4 is a valid eigenfunction with E1 = 0. Secondly, we see from figure 7.1,
which shows a plot of the probability densities |v1|2 and |v2|2, that these are not
symmetric across the plane z = 0, implying that in these states the atom possesses
a dipole moment that is aligned antiparallel to the field in the first case and parallel
to it in the second. The energy changes can therefore be thought of as arising from
the interaction between these dipoles and the applied field. However, in contrast
to the polarization of the ground state discussed earlier (section 7.1) these dipole
moments are not generated by the physical operation of the field and their creation
does not require the expenditure of any energy: the polarized states are simply
two of the possible eigenfunctions of the degenerate unperturbed system. The
energy change is therefore proportional to the field magnitude E , rather than to
E2. Thirdly, we see from (7.48) that neither v3 nor v4 (and also by implication no
linear combination of these functions) possesses a dipole moment and therefore
neither has a first-order interaction with the field; the energy of these states is not
affected by the perturbation to first order and they remain degenerate even in the
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presence of the field. Finally, we note that the occurrence of the Stark effect is a
result of a mixing of the wavefunctions associated with the spherically symmetric
2s state and the 2 p state with m = 0. In the hydrogenic atom these states are
‘accidentally’ degenerate but this is not the case in other atomic systems where a
linear Stark effect is therefore not found. Apart from hydrogen, a linear splitting
is observed only in the case of a few atoms such as helium where the energy
difference between the s and p states is small compared with the perturbation
resulting from a strong electric field (cf. chapter 10).

Example 7.4 Electrons in a one-dimensional solid The fact that metals can
carry electric currents implies that they contain electrons that are mobile and
not attached to particular atoms; such electrons are known as ‘free electrons’.
In many common metals (e.g. sodium) all but one of the atomic electrons are
tightly bound in ‘closed shells’, while the remaining electron is effectively free
(see chapter 10). In this example we shall develop a one-dimensional model of a
solid in which we study the behaviour of otherwise free electrons in a potential
similar to that arising from the nuclei and other electrons in a real solid. We shall
assume that this potential is weak enough to be treated as a perturbation and we
shall see that this simple model provides quite a good explanation of the electrical
conductivity of solids.

The atoms in a crystalline solid are arranged on a regular lattice, so, in
one dimension, we expect the potential experienced by a free electron to vary
periodically with distance. If we call this repeat distance a, the simplest form of
such a periodic potential is

V (x) = V0 cos(2πx/a) (7.49)

V0 is assumed to be small so that V can be treated as a perturbation, where the
unperturbed eigenfunctions correspond to completely free electrons and therefore
have the form

u0k = L−1/2 exp(ikx) (7.50)

where the factor L−1/2 ensures that the eigenfunctions are normalized when
integrated over the distance L, which is taken as the length of the macroscopic
piece of solid being considered. If this contains N atoms, it follows that L = Na.
The unperturbed energies E0k are given by (cf. section 2.4)

E0k = }
2k2

2m
(7.51)

The matrix elements representing the linking of the states u0k and u0k′ are given
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by

H ′
kk′ = L−1

∫ Na

0
exp (−ikx)V0 cos(2πx/a) exp (ik ′x) dx

= V0

2L

∫ Na

0
[exp i(k ′ − k + 2π/a)x + exp i(k ′ − k − 2π/a)x] dx

= V0

2
if k ′ − k = ±2π

a
(7.52)

= 0 otherwise

We first note that the diagonal elements H ′
kk are all zero. If the states u0k and

u0k′ are degenerate, k ′ = −k and the matrix element connecting these states is
non-zero only if k = ±π/a. The first-order changes to the energies of these state
are then given by equation (7.39) which now has the form∣∣∣∣−E1

1
2 V0

1
2 V0 −E1

∣∣∣∣ = 0 (7.53)

Thus E1 = ± 1
2 V0 and the degeneracy of those states where k = ±π/a is lifted in

first order.
We now consider states with other values of k. If k is very different

from ±π/a, so that the unperturbed energy difference (E0k − E0k′) (where
k − k ′ = ±2π/a) which appears in the denominator of (7.21) is large compared
with 1

2 V0, the second-order term will be small. However, if the values of k are in
the near vicinity of, say π/a, the matrix element of the perturbation linking this
state with that with k ′ ∼ −π/a will be much greater than the difference between
the unperturbed energies of the states k and k ′, and we can treat the problem as an
example of a ‘nearly degenerate’ system discussed earlier.2 Referring to (7.42),
the determinantal equation is now∣∣∣∣ 1

2�E0 − E1
1
2 V0

1
2 V0 − 1

2�E0 − E1

∣∣∣∣ = 0 (7.54)

which leads directly to

E1 = ± 1
2 (�E2

0 + V 2
0 )1/2 (7.55)

which agrees with the value of ± 1
2 V0 obtained earlier for the degenerate case

where k = π/a. Remembering the definitions of �E0 and E1 and using (7.51)
we have

E = }
2

4me

[
k2 +

(
k − 2π

a

)2
]
± 1

2




[
}

2

4me

[
k2 −

(
k − 2π

a

)2
])2

+ V 2
0




1/2

(7.56)
2 The only other state linked by the perturbation to that with k ∼ π/a is one with k ∼ 3π/a and the
energy difference between these two is large.
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Figure 7.2. The energy of an electron in a one-dimensional metal as a function of wave
number k, compared with that of a free electron (broken line), showing the energy gaps at
k = ±π/a.

As k moves away from π/a, the energy should approach its unperturbed value.
This is achieved if the positive sign in (7.56) is assigned to the state with
wavevector k if k > π/a and the negative sign when k < π/a. This implies
that the negative sign corresponds to the state k − 2π/a when this quantity is less
than −π/a and vice versa. In this way, we obtain the curve of Ek as a function of
k shown in figure 7.2. A notable feature of this diagram is the appearance of gaps
of width V0 in the energy spectrum corresponding to the points k = ±π/a. The
influence of these gaps on the physical properties of the system is considerable
and we shall discuss this shortly. First, however, we must consider more carefully
the boundary conditions to be imposed on the problem.

The length L was previously described as the length of the piece of solid
under consideration so the most obvious boundary condition would be to require
the wavefunction to be zero outside the range between x = 0 and x = L.
Such ‘fixed boundary conditions’ can be used, but they give rise to considerable
mathematical complications associated with the fact that plane waves of the form
(7.50) are no longer eigenfunctions of the unperturbed system. It is therefore more
convenient to use ‘periodic boundary conditions’ where we impose the condition
that uk(x) = uk(x + L) and the allowed values of k are therefore those where
k = 2nπ/L, n being an integer. This boundary condition corresponds physically
to considering the one-dimensional line to be bent round into a closed loop,
when the allowed values of k follow from the condition that the wavefunction
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be single-valued. As bulk properties such as the electrical conductivity of real
solids are not dependent on parameters such as the size and shape of the sample
being considered, it is a reasonable assumption that the precise form of boundary
conditions will not be important when discussing similar properties of our one-
dimensional model. The most convenient form can therefore be chosen and this
turns out to correspond to periodic boundary conditions.

We previously saw that the number of atoms associated with a length L of
this one-dimensional solid is N where L = Na and a is the repeat distance of
the periodic potential. The number of energy states associated with values of k
between plus and minus π/a is also N , because the periodic boundary conditions
require that successive allowed values of k are separated by 2π/L. It follows from
the Pauli exclusion principle to be discussed in chapter 10 that each state can be
occupied by no more than two electrons, which must have opposite spin. In the
case where each atom contributes one free electron to the system, the ground
state of the system will therefore correspond to the (N/2) states of lowest energy
being filled. If now an electric field is applied, some of the electrons will be
excited so that there are more with (say) positive k than with negative k and, as
k is proportional to the electron momentum, an electric current results. In this
case the one-dimensional solid behaves like a metal. However, if there are two
free electrons per atom, all the states in the band of energies whose k values lie
between plus and minus π/a will be occupied. If V0 is large enough, an applied
field will be unable to excite any electrons, and there will therefore be as many
electrons with positive k as there are with negative k; no current can then flow,
and the one-dimensional solid in this case is an insulator. If, however, V0 (and
consequently the size of the energy gap) is small enough, some electrons will be
thermally excited into states with |k| greater than π/a where they will be mobile
and can respond to a field. This excitation leaves behind ‘holes’ in the otherwise
full band and it can be shown that these have the same electrical properties as
positively charged mobile particles. Such a system is a one-dimensional intrinsic
semi-conductor.

This discussion can be generalized to the case where there are more than
two electrons per atom if we remember that a general periodic potential has
Fourier components with repeat distances a, a/2 etc., giving rise to energy gaps
at k = ±π/a, ±2π/a, etc. It is then clear that any one-dimensional solid which
possesses an odd number of free electrons per atom will be a metal, while an
even number will imply insulating or semi-conducting properties. The arguments
can be extended to three-dimensional solids where the rule is not so simple, but
where quantum mechanics has been successfully used to explain the wide range
of physical phenomena displayed by such materials. The interested reader should
consult a textbook on solid state physics (for example, J. R. Hook and H. E. Hall
Solid State Physics, Wiley, New York, 1991).
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7.3 The variational principle

This approximate method can be applied to eigenvalue problems where we know
the operator Ĥ and can make some guess as to the form of the eigenfunction
corresponding to the lowest energy state of the system. The variational principle
can then be used to improve our guessed eigenfunction and produce a maximum
value, or upper bound, to the ground-state energy. The usefulness of the
variational principle depends strongly on our ability to make a good initial guess,
and the symmetry and other physical properties of the system can often be useful
guides to this. The variational principle can be extended to consider states other
than the ground state of the system, but this has limited applications and will not
be discussed here. We shall now proceed to describe the method in detail.

Let v be a function that is to approximate to the ground-state eigenfunction
of the Hamiltonian operator Ĥ . We shall now show that the expectation value
of Ĥ calculated using v cannot be less than the true ground-state eigenvalue E0.
Allowing for the fact that v may not be normalized, this expectation value 〈Ĥ 〉 is
given by

〈Ĥ 〉 =
∫
v∗ Ĥv dτ∫
v∗v dτ

(7.57)

Using completeness, v can be expressed as a linear combination of the true, but
unknown, eigenfunctions of Ĥ :

v =
∑

n

anun (7.58)

Using (7.58) the numerator of (7.57) can be expressed as∫
v∗ Ĥv dτ =

∫ (∑
n

a∗nu∗n
)

Ĥ

(∑
m

amum

)
dτ

=
∑
nm

a∗n am

∫
u∗n Ĥum dτ

=
∑
nm

a∗n am Emδnm

=
∑

n

|an|2 En (7.59)

using orthonormality. If E0 is the ground-state eigenvalue it must be smaller than
all the other En’s, so we can write∫

v∗ Ĥv dτ > E0

∑
n

|an|2 (7.60)

The denominator of (7.57) can be similarly shown to be given by∫
v∗v dτ =

∑
n

|an|2 (7.61)
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and combining (7.57), (7.60), and (7.61) we get

〈Ĥ 〉 > E0 (7.62)

as required. Thus by guessing an approximate eigenfunction, v, we can never
get an expectation value of the energy that is less than the true value. Hence we
can calculate an upper bound to the ground-state energy. Moreover, if v contains
adjustable parameters, these can be varied until 〈Ĥ〉 has its minimum value, when
v will represent the best possible approximation of this form.

Example 7.5 The harmonic oscillator In this example we suppose that we
do not know the ground-state eigenfunction for a one-dimensional harmonic
oscillator, but have guessed that it is similar to that for a particle in an infinite
potential well. That is,

v = a−1/2 cos(πx/2a) a 6 x 6 a

= 0 |x | > a

}
(7.63)

We wish to find the value of a for which the expectation value of the energy is a
minimum. Using (7.57)

〈Ĥ〉 = a−1
∫ a

−a
cos(πx/2a)

(
− }

2

2m

∂2

∂x2
+ 1

2
mω2x2

)
cos(πx/2a) dx

where m is the particle mass and ω the classical frequency of the oscillator. The
differentiation and integration are straightforward, if a little tedious, and we get

〈Ĥ 〉 = }
2π2

8ma2
+ mω2a2

(
1

6
− 1

π2

)
(7.64)

To find an expression for a corresponding to the minimum value of 〈Ĥ〉 we put
∂〈Ĥ 〉/∂a = 0 and get

− }
2π2

4ma3
+ 2mω2a

(
1

6
− 1

π2

)
= 0

so that

a = π

[
3

4(π2 − 6)

]1/4 (
}

mω

)1/2

= 2.08

(
}

mω

)1/2

(7.65)
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Figure 7.3. The wavefunction corresponding to the ground state of a one-dimensional
harmonic oscillator (broken line) compared with that for an infinite-sided well whose
parameters are chosen using the variational principle (continuous line).

We can substitute from (7.65) into (7.64) to obtain the minimum value of 〈Ĥ 〉
which we write as 〈Ĥ〉min. Thus

〈Ĥ 〉min = 1

2

(
π2 − 6

3

)1/2

}ω

= 0.568}ω (7.66)

Thus we have been able to set an upper bound to the energy of the oscillator which
is within 14% of the true value of 1

2}ω. Figure 7.3 compares the approximate
wavefunction evaluated using the value of a given in (7.65) with the exact ground-
state eigenfunction obtained in chapter 2.

Example 7.6 The atomic polarizability of hydrogen This problem was
previously treated by perturbation theory where we showed (7.33) that an upper
bound to the polarizability α is 64πa3

0/3. As the energy of an atom in an electric
field of magnitude E is equal to − 1

2ε0αE
2, this corresponds to a lower bound for

the energy; we shall now use the variational principle to set an upper bound for
the energy and hence a lower bound to α.

We showed earlier—cf. (7.26)—that the Hamiltonian for a hydrogen atom in
a uniform electric field E in the positive z direction is

Ĥ = Ĥ0 + eEz (7.67)
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We expect the application of an electric field to polarize the atom, which means
that the negatively-charged electron will be pulled in a direction opposite to
the field, while the positively charged nucleus is pushed parallel to it. The
wavefunction should therefore be such as to enhance the probability of finding
the electron at negative rather than positive values of z. A simple (unnormalized)
function with these properties is

v = u0(1− βz) (7.68)

where u0 is the ground-state eigenfunction of Ĥ0 given in chapter 3 (3.70) and β

is a constant. We note that u0 is a real function, and we also assume β to be real.
We can therefore write the expectation value of Ĥ as

〈Ĥ 〉 =
∫

u0(1− βz)(Ĥ0 + eEz)u0(1− βz) dτ∫
u2

0(1− βz)2 dτ

=
[ ∫

u0 Ĥ0u0 dτ − β

∫
u0(z Ĥ0 + Ĥ0z)u0 dτ + eE

∫
u0zu0 dτ

+ β2
∫

u0z Ĥ0zu0 dτ − 2βeE
∫

u0z2u0 dτ + β2eE
∫

u0z3u0 dτ

]

÷
[∫

u2
0 dτ − 2β

∫
u0zu0 dτ + β2

∫
u0z2u0 dτ

]
(7.69)

Remembering that u0 is the ground-state energy eigenfunction in the zero-field
case, which is spherically symmetric, all integrals that involve odd powers of z,
are equal to zero on symmetry grounds. Moreover,

∫
u0z Ĥ0zu0 dτ also vanishes,

as can be shown by substituting the spherical polar expressions for the operators
and eigenfunctions (cf. chapter 3), while the integral

∫
u0z2u0 dτ was earlier

shown (7.31) to be equal to a2
0. Equation (7.69) therefore becomes

〈Ĥ 〉 = E0 − 2eEβa2
0

1+ β2a2
0

� E0(1− β2a2
0)− 2eEβa2

0 (7.70)

where we have ignored powers of β higher than the second as we are interested in
the case of low fields where β is expected to be small. We can now differentiate
to find a value of β corresponding to the minimum value of 〈Ĥ 〉:

−2a2
0βE0 − 2eEa2

0 = 0

that is,

β = − eE

E0
(7.71)
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Substituting into (7.70), the minimum value 〈Ĥ〉min of 〈Ĥ 〉 is

〈Ĥ 〉min = E0 + e2E2

E0
a2

0

= E0 − 8πε0a3
0E

2 (7.72)

using (3.72). This represents an upper bound to the ground-state energy, so the
corresponding lower bound for the polarizability is 16πa3

0. We can combine
this with the upper bound obtained by perturbation methods and the Unsöld
approximation (7.33) to give

16πa3
0 6 α 6 64πa3

0/3 (7.73)

Taking as a best estimate, the average of these two bounds, we get

α = (18.8± 2.8)πa3
0 (7.74)

and we have therefore obtained a theoretical value for the polarizability that is
rigorously correct to within about 14%. Moreover, it is in good agreement with
experimental value of 18.4πa3

0.
A combination of perturbation and variational calculations can quite often

be used in a similar way to that just described to obtain upper and lower
bounds to the theoretical estimates of physical quantities that cannot be calculated
directly—perhaps because the unperturbed eigenvalues and eigenfunctions are
unknown. Such methods are frequently used, for example, in the calculation of
the polarizabilities of non-hydrogen atoms and of molecules, and in estimating
the ‘van der Waals’ interactions between atoms in gases. In favourable cases,
by the use of sophisticated trial functions in the variational method and special
techniques to estimate the sums over states in the perturbation expressions, the
upper and lower bounds can be made to approach each other very closely so that
highly accurate theoretical results can be obtained.

Problems

7.1 A particle moves in a potential given by

V = V0 cos(π x/2a) (−a 6 x 6 a) V = ∞ (|x| > a)

where V0 is small. Treat this problem as a perturbation on the case of a particle in an infinite-sided
square well of length 2a and calculate the changes in the energies of the three lowest energy states to
first order in V0.

7.2 A particle moves in a potential given by

V = V0 (−b 6 x 6 b) V = 0 (b < |x| 6 a) V = ∞ |x| > a

Calculate the energies of the three lowest states to first order in V0 using a similar procedure to that in
problem 7.1.

7.3 The hydrogenic atom was treated in chapter 3 on the assumption that the nucleus has a point
charge, while in reality the nuclear charge is spread over a small volume. Show that if we were
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to assume that the nuclear charge was in the form of a thin shell of radius δ, where δ ! a0, the
ground -state energy of a hydrogen atom would be increased by an amount equal to Ze2δ2/(6πε0a3

0 ).

Calculate this quantity for hydrogen assuming δ = 10−15 m and express your result as a fraction of
the total ground-state energy.

7.4 A particle of mass m is attached by a massless rigid rod of length a to a fixed point and can rotate
about a fixed axis passing through this point. Its energy eigenvalues and corresponding eigenfunctions
are then En = }

2n2/2ma2 and un = (2π)−1/2 exp(inφ) respectively (cf. problem 5.2). If this system
is now perturbed by a potential V0 cos(2φ), calculate the first-order changes in the three lowest energy
levels, remembering to allow for degeneracy where appropriate. Show that the second-order change
in the ground (n = 0)-state energy is equal to −ma2V 2

0 /4}2.

7.5 Show that a first-order Stark effect is possible only if the unperturbed eigenfunctions do not have
a definite parity. How then is it possible to observe the Stark effect in hydrogen where the potential is
centrosymmetric?

7.6 Use perturbation theory to show that the first-order changes in energy levels due to spin–orbit
coupling are given by

[ j ( j + 1)− l(l + 1)− s(s + 1)]}2〈 f (r)〉
in the notation of chapter 6 where the expectation value 〈 f (r)〉 is calculated using only the radial part
of the unperturbed eigenfunction. Use the fact that the splitting of the D lines in sodium is about
6 × 10−10 m and that their mean wavelength is 5.9 × 10−7 m to estimate 〈 f (r)〉 in the case of the
l = 1 state involved in the D lines of sodium.

7.7 Use the result obtained in problem 7.6 to show that spin–orbit coupling splits the 2p level in
hydrogen into a doublet whose separation, expressed as a fraction of the mean unperturbed energy, is
equal to (e2/8πε0}c)2.

7.8 Use perturbation theory to obtain the spin–orbit correction to the strong-field Zeeman levels (6.63).
Hint. First show that the perturbation can be written in the form 2 f (r)L̂ · Ŝ; remember that the
unperturbed eigenfunctions are eigenfunctions of L̂ z and Ŝz .

7.9 Use the variational principle and the trial function exp(−αx2) to obtain an upper limit for the
ground-state energy of a one-dimensional harmonic oscillator. Compare your results with the exact
expressions given in chapter 2.



Chapter 8

Time dependence

So far in our development of quantum mechanics, we have given very little
consideration to problems involving the time dependence of the wavefunction.
This is rather surprising as in classical mechanics it is time-dependent
phenomena—i.e. dynamics rather than statics—that command most attention.
Moreover, most experimental observations necessarily involve some change in
the quantity being observed, so we might expect that the successful prediction of
experimental results will require a detailed understanding of the way in which
a system changed in time. In fact we have made some implicit assumptions
about time dependence and the principal reason why we have got so far without
discussing it in detail is that many observed quantum phenomena are associated
with sudden discontinuous changes between otherwise stable states. Thus most
of our information concerning the energy levels of atoms has been obtained
from measurements of the frequencies of electromagnetic radiation emitted or
absorbed as the atom undergoes a transition from one energy eigenstate to
another, assuming the correctness of the formula E = }ω, but not considering
the mechanism of the transition in any detail. Assumptions concerning time
dependence are also implicit in the quantum theory of measurement which
refers to the probability of obtaining a particular result following a measurement
performed on a system in a given state; thus, for example, the state vector of
a spin-half particle changes from being an eigenvector Ŝz to being one of Ŝx

following a measurement of the latter property using an appropriately oriented
Stern–Gerlach apparatus. As was pointed out in chapter 4, and will be discussed
further in chapters 12 and 13, the ‘collapse’ of the wavefunction associated with
a measurement is not a consequence of the time-dependent Schrödinger equation.

There are, however, a number of problems in which the time dependence
of the wavefunction must be considered explicitly, and some of these will be
discussed in the present chapter. We already know from postulate 4.5 that
the basic equation governing the time evolution of the wavefunction between
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measurements is the time-dependent Schrödinger equation

i}
∂�

∂ t
= Ĥ� (8.1)

where Ĥ is the Hamiltonian operator representing the total energy of the system.
We shall initially consider the case where Ĥ is not itself explicitly time dependent.
We later turn to the more general case and consider the ‘sudden approximation’,
where Ĥ changes suddenly from one time-independent form to another; and
‘time-dependent perturbation theory’, where the time dependence is confined to
a part of the Hamiltonian which can be considered to be small. This will enable
us to solve the problem of an atom subject to a time-varying field and will lead to
an understanding of the occurrence of transitions between different energy states.
We shall also see why some of these transitions are more probable, and therefore
associated with more intense spectral lines, than others. We shall then discuss the
Ehrenfest theorem which is used to clarify the connection between quantum and
classical mechanics. We close the chapter with a discussion of the application of
the general results to the particular example of the ammonia maser.

8.1 Time-independent Hamiltonians

This case was considered briefly in the discussion following postulate 4.5 where it
was shown that, if the wavefunction at some initial time t = 0 is given by �(r, 0)
where

�(r, 0) =
∑

n

an(0)un(r) (8.2)

and the un(r) are the energy eigenfunctions, i.e.

Ĥun = Enun (8.3)

then the wavefunction �(r, t) at time t is given by

�(r, t) =
∑

n

an(0)un(r) exp(−i Ent/}) (8.4)

We pointed out that (8.4) contains the quantum-mechanical equivalent of the
conservation of energy: if the energy has once been measured so that the
wavefunction is an energy eigenfunction, it retains this form indefinitely (apart
from a time-dependent phase factor) and any subsequent energy measurement is
then certain to produce the same result. Equation (8.4) can also be used to study
the behaviour of systems that are not initially in energy eigenstates, and we shall
now consider two particular examples that illustrate this point.
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The harmonic oscillator

The energy levels of a one-dimensional harmonic oscillator were shown in
chapter 2 to be En = (n + 1

2 )}ω where ω is the classical angular frequency.
We can use this expression and the general theory described earlier to study the
behaviour of such an oscillator when it is not initially in an energy eigenstate.
Equation (8.4) becomes, in this case,

�(x, t) =
∑

n

an(0)un(x) exp
(−i(n + 1

2 )ωt
)

(8.5)

If we consider the particular time T corresponding to the classical period of the
oscillator (that is, T = 2π/ω) we get

�(x, T ) =
∑

n

an(0)un(x) exp
(−i(n + 1

2 )2π
)

= −
∑

n

an(0)un(x)

= −�(x, 0) (8.6)

Thus, whatever the initial conditions, the wavefunction at time T is equal to
minus that at time zero. It clearly follows that at time 2T the wavefunction will
be identical to that at time zero, so the wavefunction varies periodically with a
frequency half that of the classical oscillator. However, it should be noted that the
sign of the wavefunction has no physical significance, and we conclude that all
the physical properties of the harmonic oscillator will vary periodically in time
with a frequency identical to the classical frequency. Figure 8.1 illustrates this by
showing the time evolution of the position probability density associated with a
wavefunction whose form at t = 0 is the normalized sum of the two lowest energy
eigenfunctions.

We can use this example as a further illustration of the correspondence
principle, previously discussed in connection with the harmonic oscillator in
chapter 2. This states that the results of quantum mechanics go over to those of
classical mechanics in the limit where the total energy is large compared with the
separation of the states. A classical oscillator, such as a clock pendulum, appears
always to have a well-defined position which varies sinusoidally with the classical
frequency; quantum mechanically this means that the initial wavefunction must
have the form of a narrow localized pulse. It follows from this that this pulse will
move from side to side with the classical frequency and amplitude. This implies
that a large number of energy eigenfunctions must contribute to the expansion
(8.5). There must therefore be some uncertainty in the value of the energy, and the
classical limit is reached when the average energy is so large that this uncertainty
is an undetectably small fraction of the total.
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Figure 8.1. The time evolution of the position probability density corresponding to a
particle in a harmonic oscillator potential whose wavefunction at t = 0 is the normalized
sum of the two lowest energy eigenfunctions.
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Spin-half particle in a magnetic field

Although the time-dependent Schrödinger equation (8.1) has been written in
terms of the wave representation, it is equally valid if � is replaced by a column
vector whose elements are, in general, time dependent, and the Hamiltonian is
expressed as a matrix (cf. chapter 6). If we consider the particular case of a spin-
half particle with no orbital angular momentum in a magnetic field B which is in
the z direction, (8.1) becomes

i}
∂

∂ t

[
a1(t)
a2(t)

]
= Ĥ

[
a1(t)
a2(t)

]
(8.7)

and the Hamiltonian Ĥ is (cf. (6.34))

Ĥ = −µs · B

= e

me
B Ŝz

= e}

2me
B

[
1 0
0 −1

]
(8.8)

where Ŝz has been expressed in terms of a spin-matrix—cf. (6.15) and (6.16).
Substituting from (8.8) into (8.7) and expanding we get

i}
∂a1

∂ t
= (e}B/2me)a1

i}
∂a2

∂ t
= −(e}B/2me)a2


 (8.9)

and therefore
a1(t) = a1(0) exp(− 1

2 iωpt)

a2(t) = a2(0) exp( 1
2ωpt)

}
(8.10)

where ωp = eB/me. If the initial state is an eigenstate of the energy,
corresponding to Ŝz = 1

2}, at t = 0, then a1(0) = 1 and a2(0) = 0, and the
only change in time is that contained in a phase factor multiplying the whole
state vector which has no physical consequences. However, a more interesting
case is where the initial state is an eigenstate of Ŝx : for example, that where
a1(0) = a2(0) = 2−1/2, corresponding to an eigenvalue of 1

2}. It follows directly
from (8.10) that the wavevector at time t now has the form

1√
2

[
exp(− 1

2 iωpt)

exp( 1
2ωpt)

]
(8.11)

This expression is again an eigenvector of Ŝx with the same eigenvalue when
t = 2π/ωp , 4π/ωp , 6π/ωp , etc. Moreover, we can show that at other times
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(8.11) is an eigenvector of the operator Ŝφ representing a measurement of the
component of spin in a direction in the xy plane at an angle φ to the x axis where
φ = ωpt . Consider the matrix representing the operator Ŝφ :

Ŝφ = Ŝx cosφ + Ŝy sin φ

= 1

2
}

[
0 exp(−iφ)

exp(iφ) 0

]
(8.12)

The eigenvector of this matrix with eigenvalue 1
2} is

1√
2

[
exp(−iφ/2)
exp(iφ/2)

]
(8.13)

and the required result follows directly from a comparison of (8.11) and (8.13).
We conclude, therefore, that if the system is initially in an eigenstate of Ŝx with
eigenvalue 1

2}, it will always be in a similar eigenstate of the operator Ŝφ whose
direction rotates in the xy plane with an angular velocity ωp . It is tempting to
conclude from this that the angular-momentum vector of the particle precesses
about the field direction with this angular velocity, which is what would happen
in the similar classical situation. But it is important not to pursue this analogy
too far. In classical precession, the direction of the angular-momentum vector,
and hence the magnitudes of all three of its components, always have known
values; but in quantum mechanics only one angular-momentum component can
be measured at any given time. For example, the precession model would imply
that the y component of the angular momentum would be zero at the times
when φ is zero, but we know from quantum mechanics and experiment that a
measurement of this quantity always yields a result equal to either plus or minus
1
2} and never zero. The application of this precession model (sometimes known
as the ‘vector model’) can be applied rigorously only in the semi-classical limit
where the quantum numbers are large.

Finally we note a further interesting consequence of equation (8.13): if we
add 2π to the angle φ, that is if we rotate the system through 360◦, the sign of
the eigenfunction is reversed, and we see from (8.11) that this sign change also
occurs under the influence of a magnetic field after a time 2π/ωp . Usually this has
no effect on the physical properties of the system, for the same reasons as those
discussed earlier in connection with the sign of the wavefunction of the harmonic
oscillator. However, experiments can be conducted in which the occurrence of
the sign change is confirmed. A beam of spin-half particles is directed into an
apparatus through which there are two possible paths (see figure 8.2). Each path
contains a region in which there is a magnetic field and the two magnetic fields
have the same magnitude, but are in opposite directions. The speed of the particles
is adjusted so that the magnetic fields rotate the spin by 180◦ in opposite directions
depending on the path followed, and the wavefunctions associated with each path
therefore have opposite sign. An interference experiment is performed in which
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Figure 8.2. Neutrons pass through the lower slit and then enter a region where there is a
magnetic field directed either vertically upwards (on the left) or downwards (on the right).
The resulting interference pattern has a minimum in the centre if the relative rotation of the
spins passing along the two paths is an odd number multiplied by 2π .

we do not know which route the particles have followed so that the wavefunction
on the far side of the apparatus is the sum of those associated with the two paths.
The resulting diffraction pattern therefore has zero intensity at its centre due to the
destructive interference between the oppositely rotated components. In contrast,
if B = 0, the centre corresponds to a maximum in the interference pattern. Such
experiments were carried out by a number of workers in the mid 1970s using
neutrons, and their results confirm these theoretical predictions.

8.2 The sudden approximation

So far we have restricted our discussion to systems whose Hamiltonians have
no explicit time dependence, but we shall now extend our treatment to include
cases where time-varying forces are acting. These problems can often be
very difficult to solve and we shall restrict our consideration to those where
particular simplifying assumptions can be applied. One such case is the sudden
approximation which can be used when the Hamiltonian changes instantaneously
from one time-independent form—say Ĥ1—to another—say Ĥ2—at a time which
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we take to be t = 0. Thus

Ĥ = Ĥ1 t 6 0

Ĥ = Ĥ2 t > 0

}
(8.14)

We assume that the eigenfunctions of Ĥ1 and Ĥ2 are un and vn respectively
and that the system is known to be in one of the eigenstates of Ĥ1—say that
represented by u0 before the change. We shall obtain the form of the wavefunction
at times t > 0 and hence the probabilities that a subsequent energy measurement
will yield a particular eigenvalue of Ĥ2.

We first note that the time-dependent Schrödinger equation ensures that a
finite discontinuity in Ĥ produces a similar discontinuity in ∂ψ/∂ t , and therefore
ψ must be continuous in time. Thus immediately before and after the change we
must have

�(r, 0) = u0(r)

=
∑

n

an(0)vn(r) (8.15)

where we have used completeness to expand u0 in terms of the set of
eigenfunctions vn . As Ĥ2 is time independent we can use (8.4) to obtain an
expression for � at all times greater than zero:

�(r, t) =
∑

n

an(0)vn(r) exp(−i Ent/}) (8.16)

where the energy levels En are the eigenvalues of Ĥ2. Expressions for the
constants an(0) can be obtained by multiplying both sides of (8.15) by v∗n and
integrating over all space. Thus

an(0) =
∫

v∗n u0 dτ (8.17)

According to the quantum theory of measurement, the probability of obtaining
any particular value En as a result of a measurement of the energy at any time
after the change is equal to |an|2. Following such a measurement, of course, the
wavefunction would be changed to equal the corresponding eigenfunction vn .

An example of the practical application of the sudden approximation is
the change in the wavefunction of an atom following a radioactive decay of its
nucleus. Tritium (3H) can decay by the emission of a β particle and a neutrino
to become a positively charged, one-electron ion whose nucleus is 3He. As far as
the atomic electron is concerned, therefore, its Hamiltonian has changed suddenly
from that corresponding to a hydrogen atom with nuclear charge Z = 1 to that
of a He+ ion with Z = 2. The energy eigenfunctions of both these systems
can be obtained from the expressions given in chapter 3 and the probabilities of
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subsequent measurements yielding particular eigenvalues of the He+ ion can then
be readily calculated following the procedure described earlier. For example, the
probability of finding the He+ ion in its ground state is |A|2 where (cf. (8.17))

A =
∫ ∞

0
(8/πa3

0)
1/2 exp (−2r/a0) (1/πa3

0)
1/2 exp (−r/a0) 4πr2 dr

= (8
√

2/a3
o)

∫ ∞

0
exp (−3r/a0)r

2dr

= 16
√

2/27 = 0.838

so that the probability, |A|2 is 0.70.
A particularly interesting feature of this example follows from the fact that a

value of the energy of the He+ ion can, in principle, be obtained from a knowledge
of the energy associated with the nuclear decay, combined with those of the
emitted β particle and the neutrino (although in practice the energy of the latter
would be very difficult to measure). But the β particle and neutrino could well
be a large distance from the atom when these measurements are made so that
the energy of the ion would have been measured without apparently interfering
with it. Nevertheless, quantum mechanics states that this measurement will cause
the wavefunction of the atom to change from a form similar to (8.16) to the
appropriate energy eigenfunction. This apparent contradiction is an example of
what is known as entanglement, which will be discussed more fully in chapters 12
and 13.

8.3 Time-dependent perturbation theory

A very important type of time-dependent problem is one where the Hamiltonian
Ĥ can be written as the sum of a time-independent part Ĥ0 and a small time-
dependent perturbation Ĥ ′. An example of this, to which we shall return later,
is the case of an atom subject to the oscillating electric field associated with
an electromagnetic wave, which can cause transitions to occur from one energy
state to another. We shall now describe a method known as time-dependent
perturbation theory for obtaining approximate solutions to such problems.

We wish to solve the time-dependent Schrödinger equation (8.1) for the case
where

Ĥ(r, t) = Ĥ0(r)+ Ĥ ′(r, t) (8.18)

We assume that the eigenfunctions uk(r) of Ĥ0 are known and expand the
wavefunction �(r, t) as a linear combination of these

�(r, t) =
∑

k

ck(t)uk(r)e−i Ek t/} (8.19)

where the expansion coefficients ck have been defined so as to exclude the
factors exp(−i Ekt/}), as this simplifies the ensuing argument. Substituting from
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(8.18) and (8.19) into (8.1), and assuming that although Ĥ ′ is time dependent it
commutes with ck , we get

i}
∑

k

(ċk − iωkck)uke−iωk t =
∑

k

(ck}ωkuke−iωk t + ck Ĥ ′uke−iωk t )

where

ċk = ∂ck

∂ t
and ωk = Ek

}

Thus ∑
k

(i}ċk − ck Ĥ ′)uke−iωk t = 0 (8.20)

We now multiply (8.20) by the complex conjugate of one of the unperturbed
eigenfunctions, u∗m , and integrate over all space to get

i}ċme−iωm t −
∑

k

ck Ĥ ′
mke−iωk t = 0

That is

ċm = 1

i}

∑
k

ck Ĥ ′
mkeiωmk t (8.21)

where

Ĥ ′
mk =

∫
u∗m Ĥ ′uk dτ and ωmk = ωm − ωk

Everything we have done so far is exact, but we now apply perturbation
techniques in a similar manner to that described for the time-independent case in
chapter 7. We introduce a constant β, replace Ĥ ′ by β Ĥ ′ and expand the constants
ck in a perturbation series (cf. time-independent perturbation theory, chapter 7)

ck = ck0 + βck1 · · · (8.22)

Substituting from (8.22) into (8.21), remembering to replace H ′
mk by βH ′

mk we
get

ċm0 + β ċm1 + · · · = 1

i}
β

∑
k

ck0 H ′
mkeiωmk t + · · · (8.23)

where the omitted terms all contain higher-order powers of β. Equating the
coefficients of the zeroth and first powers of β we have

ċm0 = 0 (8.24)

ċm1 = 1

i}

∑
k

ck0 H ′
mkeiωmk t (8.25)
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Equation (8.24) implies that the coefficients cm0 are constant in time, which is to
be expected as the zero-order Hamiltonian is time independent. The first-order
contributions to cm are obtained from (8.25) as

cm1 = 1

i}

∑
k

ck0

∫ t

0
H ′

mkeiωmk t dt (8.26)

We are particularly interested in the case where the system is known to be in
a particular eigenstate—say that represented by un—at the time t = 0 so that
cn0 = 1, and ck0 = 0, k �= n. Equation (8.26) then becomes

cm1 = 1

i}

∫ t

0
H ′

mneiωmn t dt (8.27)

Remembering that cm0 = 0 (m �= n) we see that the probability of finding the
system in a state represented by um where m �= n is given by |cm1|2, provided
that cm1 is small enough for the perturbation approximation to hold.

Periodic perturbations

We shall now apply these general results to systems where the perturbation varies
sinusoidally in time, that is, where

Ĥ ′(r, t) = Ĥ ′′(r) cosωt

= 1
2 Ĥ ′′(r)

[
exp(iωt)+ exp(−iωt)

]
(8.28)

and ω is the angular frequency of the perturbation. Substituting into (8.27), we
get

cm1 = H ′′
mn

2i}

∫ t

0
[ei(−ω+ωmn )t + ei(ω+ωmn )t ] dt

= −H ′′
mn

2}

[
ei(−ω+ωmn )t − 1

−ω + ωmn
+ ei(ω+ωmn )t − 1

ω + ωmn

]
(8.29)

The first term in square brackets on the right-hand side of (8.29) has a maximum
value if ω = −ωmn and is comparatively small for values of ω appreciably
different from this, while the second term has a similar maximum at ω = ωmn .
It is therefore a reasonable approximation to assume that cm1, and therefore
the transition probability, is negligibly small unless one of these conditions is
at least approximately, fulfilled. Moreover (except for the special case where
ωmn = 0, to which we shall return in the next chapter) both conditions cannot be
simultaneously satisfied, so we can assume that only one of the two terms is non-
negligible for a particular value of ω. We shall consider the case where ω � ωmn

and neglect the other term in (8.29) for the moment.
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Figure 8.3. The transition probability |cm1|2 as a function of (ωmn − ω) in the case of
a system which has been subject to a periodic perturbation of angular frequency ω for a
time t .

The probability of finding the system in the state um at time t is therefore
|cm1|2 where

|cm1|2 = |H ′′
mn|2

4}2

2[1− cos(ωmn − ω)t]
(ωmn − ω)2

= |H ′′
mn|2

4}2

sin2[(ωmn − ω)t/2]
[(ωmn − ω)/2]2 (8.30)

This expression is plotted as a function of (ωmn−ω) in figure 8.3. We note that the
height of the central peak is proportional to t2 while its width is proportional to
t−1. Thus, after a time that is long compared with the period of the perturbation,
the transition probability will be negligibly small unless the condition ω = ωmn

is fulfilled. That is, unless
}ω = Em − En (8.31)

In the case where the perturbation results from an electromagnetic wave, ω is
the angular frequency of the radiation so we see that (8.31) is just the basic
equation relating this quantity to the difference between the energies of the
states which we discussed in chapter 1. We note that this result has been
obtained independently of the photon postulate, which is associated with the
quantization of the electromagnetic field. As was emphasized in the discussion
of the photoelectric effect in chapter 1, photons are necessary to explain the
fact that an atom can be excited into a higher energy state before sufficient
classical electromagnetic energy would have reached it. Further evidence for
the importance of field quantization comes from the phenomenon of spontaneous
emission, which is discussed later.
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We can draw another conclusion from (8.31) by noting that, since ω is always
positive, Em must be larger than En and the transition discussed corresponds
to an excitation of the system, with, presumably, a corresponding absorption of
energy from the perturbing field. If, however, we had used the first instead of
the second term on the right-hand side of (8.29), we should have obtained the
condition ω = −ωmn along with expressions similar to (8.30) and (8.31), but
with appropriate changes of sign. This would correspond to the case where the
perturbation causes a transition from an initial excited state to another of lower
energy; energy is then emitted from the system and such a process is known as
‘stimulated emission’.

Before we can use (8.30) to calculate more detailed properties of transitions
in practical situations, such as the absorption or emission of electromagnetic
radiation by atoms in gases, we must allow for the fact that the excited states
of quantum systems do not have perfectly defined energies, but are usually
broadened into a band containing a large number of closely spaced levels.
Furthermore, the perturbation is often not a pure oscillation at a single frequency
ω, but is rather a mixture of frequencies in a band of greater or lesser width centred
on ω. We first consider the case where the broadening of the energy levels is much
greater than that of the perturbation. This broadening can arise from a number
of causes: for example the atoms in a gas are in thermal motion so, relative to
their own frame of reference, they ‘see’ the frequency of the perturbation shifted
by the Doppler effect: in the laboratory frame of reference this is equivalent
to a broadening of the atomic energy levels. Another cause of broadening, to
be discussed in more detail shortly, arises because the excited states of atoms
always have a ‘natural’ line width associated with the possibility of spontaneous
emission. If one or both of the levels Em and En are broadened for any reason,
this results in a similar broadening of the frequency difference ωmn . The latter can
then be represented by a function g(ωmn), known as the ‘density of states’, which
is defined so that the number of pairs of levels that have an energy difference
between }ωmn and }(ωmn + dωmn) is g(ωmn)dωmn . Assuming that the matrix
elements are identical for all these pairs of states, the total probability P(t) for
any such transition to take place is then

P(t) = |H ′′
mn|2

4}2

∫ ∞

0

sin2[(ωmn − ω)t/2]
[(ωmn − ω)/2]2 g(ωmn) dωmn (8.32)

For large enough t , g(ωmn) is a more slowly varying function of ωmn than
is the rest of the integrand, which is sharply peaked about the point ωmn = ω

(cf. figure 8.3); we can replace g(ωmn) by g(ω) and take this quantity outside
the integral, which can then be evaluated by standard (though not elementary)
methods, leading to

P(t) = π |H ′′
mn|2

2}2
g(ω)t (8.33)

The transition rate, W , defined as the transition probability per unit time is then
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given by

W = d P

dt
= π |H ′′

mn|2
2}2

g(ω) (8.34)

Alternatively, the perturbation may not be of a single frequency, but may be
made up from a superposition of waves, the number of which having frequencies
between ω and ω + dω being g′(ωmn). A similar argument leads to the same
expression for W , but with g(ω) replaced by g′(ωmn). In the general case where
both widths have to be taken into account, the relevant quantity is g′′(ω) =∫

g(ω′)g′(ω − ω′) dω′.
Equation (8.34) is known as Fermi’s golden rule. It has a wide range of

applications, both in the field of atomic transitions and, as we shall see in the
next chapter, in scattering theory. The important point to remember is that the
transition rate per unit time is proportional to the square of the matrix element
and to the density of states.

Although energy levels are normally broadened sufficiently for Fermi’s
golden rule to be applicable, there are some situations in which this is not the
case. In a typical laser, for example, the atoms in the lasing medium do not
operate independently, but have to be treated as a coherent whole whose transition
frequencies are determined by the size and shape of the laser cavity, and the
resulting density of states can be very narrow indeed. As a result, the transition
probability shown in figure 8.3 does not become narrower than g(ωmn) until t is so
large that the value of |cm1|2 at ωmn = ω is greater than one, which is of course
inconsistent with its definition as a probability. This arises because first-order
perturbation theory does not allow for the fact that the probability of occupation
of the original state un decreases as that relating to um rises. A more rigorous
analysis, which we shall not describe here, shows that such a system oscillates
between the two states at an angular frequency equal to |H ′′

mn|/2}. Such ‘quantum
oscillations’ play an important role in the behaviour of lasers and masers, as we
shall see in the last section of this chapter where we describe the ammonia maser.

8.4 Selection rules

The results of the previous section will now be used to improve our understanding
of the absorption and emission of radiation by atoms undergoing transitions
between energy levels. The transition rate clearly determines the intensity of the
corresponding spectral line, and both are proportional to the square of the matrix
element H ′′

mn. We note, in particular, that if this is zero the transition will not take
place. Such non-occurring transitions are described as ‘forbidden’ and the rules
that determine which transitions in a given system are forbidden and which are
‘allowed’ are known as selection rules. These are very important in the study of
the physics of atoms, molecules, nuclei and solids; and are extensively discussed
in textbooks specializing in these areas. We shall confine our discussion to a brief
introduction to the selection rules applying in the case of a one-electron atom.
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We consider such an atom subject to a plane electromagnetic wave of angular
frequency ω whose electric vector is in the z direction and has magnitude E where

E = E0 cos(k · r− ωt) (8.35)

We take the origin of coordinates at the atomic nucleus and assume that the
wavelength of the radiation is much greater than the radius of the atom. The
term k · r is therefore very small so that the electric field is effectively uniform
over the atom. The operator representing the energy of interaction between the
atom and the field is therefore given by

Ĥ ′ = eEz � eE0z cosωt

and therefore
Ĥ ′′ = eE0z (8.36)

We now consider the matrix element of this perturbation which connects two
states whose quantum numbers are (n1, l1,m1) and (n2, l2,m2) respectively and
which we write as H ′′

12 for convenience. Using expressions for the one-electron
wavefunctions from chapter 3 (3.70), we have

H ′′
12 = eE0

∫
u∗n1l1m1

zun2l2m2 dτ

= eE0

∫ 2π

0

∫ π

0

∫ ∞

0
R∗n1l1(r)P |m1|

l1
(cos θ)e−im1φr cos θ

× Rn2l2(r)P |m2 |
l2

(cos θ)eim2φr2 dr sin θ dθ dφ

= eE0

[ ∫ ∞

0
R∗n1l1

(r)Rn2l2(r)r
3 dr

]

×
[ ∫ π

0
P |m1|

l1
(cos θ)P |m2|

l2
(cos θ) cos θ sin θ dθ

]

×
[ ∫ 2π

0
ei(m2−m1)φ dφ

]
(8.37)

It follows that such a transition could take place only if all three integrals in (8.37)
are non-zero. If we first consider the integral over φ, we see that this vanishes
unless m1 = m2. The integral with respect to θ can be evaluated, given the
following property of the associated Legendre functions, P |m|l :

(2l + 1) cos θ P |m|l = (l − |m| + 1)P |m|l+1 + (l + |m|)P |m|l−1 (8.38)

Using (8.38) and considering the case where m1 = m2 the integral over θ in (8.37)
becomes

l2 − |m1| + 1

2l2 + 1

∫ π

0
P |m1|

l1
P |m1|

l2+1 sin θ dθ + l2 + |m1|
2l2 + 1

∫ π

0
P |m1|

l1
P |m1|

l2−1 sin θ dθ

(8.39)
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However, associated Legendre functions that have the same value of m but
different l are orthogonal, so the integrals in (8.39) vanish unless l1 = l2 + 1
or l1 = l2 − 1. So far we have discussed a field polarized in the z direction; if we
now consider it to be polarized in the x direction we will have

Ĥ ′′ = eE0x

= eE0r sin θ cosφ (8.40)

in spherical polar coordinates. A similar argument to the previous one shows that,
in this case, the same relation holds between l1 and l2, but the φ integral is now

1
2

∫ 2π

0
[exp i(m2 − m1 + 1)φ + exp i(m2 − m1 − 1)φ]dφ

which is zero unless m1 = m2 ± 1. The selection rules governing the allowed
transitions in the presence of an electromagnetic wave of arbitrary polarization
are therefore

�l = ±1

�m = ±1 or 0

}
(8.41)

where �l and �m represent the differences between the values of l and m
associated with the two states. We note that there are no such rules governing the
change in the principal quantum number n, which results from the fact that the first
integral in (8.37) is always finite; its value can, however, vary considerably from
one transition to another resulting in a corresponding variation in the intensities
of the spectral lines.

These selection rules refer to electric dipole transitions where the perturbing
Hamiltonian has the form (8.36) or (8.40). However, other types of transition can
be induced by electromagnetic radiation. First, (k · r) can be assumed to be small
rather than zero, and the right-hand side of (8.35) can be expanded as a power
series leading to

E = E0[cosωt + (k · r) sinωt − 1
2 (k · r)2 cosωt + · · · ] (8.42)

Only the first term of (8.42) has been considered so far and the others can lead
to transitions known as electric quadrupole, electric octopole, etc. Second, the
atomic electron interacts with the magnetic field associated with the wave as
well as the electric field. This leads to the possibility of transitions known as
magnetic dipole, magnetic quadrupole, etc. Detailed calculations of the transition
probabilities associated with both these classes of transition are most conveniently
performed if the electromagnetic wave is expressed in vector-potential form.
Details of this and the resulting selection rules can be found in textbooks on
atomic physics: in general the spectral lines associated with allowed electric
dipole transitions are much more intense than any others.
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Spontaneous emission

So far we have only discussed the case where transitions between energy levels
are caused by the perturbation associated with an applied field. However, it
is well known that an atom in an excited state will decay to its ground state,
emitting radiation, even if it is completely isolated. This appears to contradict
our previous statement that a system in an energy eigenstate should remain in this
state indefinitely, and to resolve this we have to consider the quantization of the
electromagnetic field. The Hamiltonian (8.28) is evaluated assuming the classical
form of the electromagnetic wave, neglecting the fact that it is quantized and
consists of photons. A proper discussion of field quantization is well outside the
scope of this book, although we touch on it again in chapter 11, but the following
simplified argument explains its application to the present problem.

Classically, an electromagnetic wave consists of perpendicular electric and
magnetic fields and we first consider a single mode of oscillation with angular
frequency ω. The energy of such a mode can be written as

W = 1

2
ε0〈E2〉 + 1

2µ0
〈B2〉

per unit volume, where 〈E2〉 and 〈B2〉 are the mean square amplitudes of the
electric and magnetic fields. This expression bears some similarity to that for the
energy of a classical harmonic oscillator of frequency ωc:

E = p2

2m
+ 1

2
mω2

c x2.

It turns out that this analogy can be developed to quantize the electromagnetic
field. Just as a harmonic oscillator has a zero-point energy 1

2}ωc (cf. chapter 2,
section 2.6) a mode of the electromagnetic field with frequency ω has a minimum
possible energy of 1

2}ω. This means that even in the vacuum, where classically
we would not expect any fields to exist, each possible mode of oscillation has
this energy. The vacuum must therefore contain fluctuating electric and magnetic
fields, and the mean square amplitude of the former is given by

〈E2〉 = }ω/(2ε0V ) (8.43)

where V is the volume occupied by the field. This field can cause an excited atom
to ‘spontaneously’ decay with the emission of a photon. The reverse process is
clearly impossible as energy must be conserved and the field energy is already at
its minimum value. We can use this, along with our earlier results, to estimate the
expected rate of spontaneous emission from an excited state. To do this we need
to know the density of states, or number of modes of oscillation, associated with
the field. This is equal to the number of modes of vibration in a volume V , which
can be calculated by assuming the volume to be a square box of side L on the
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boundaries of which the electric field must be zero. It follows that the k vectors
of the waves must satisfy the condition

k = (kx , ky, kz) = (n1π/L, n2π/L, n3π/L) (8.44)

where n1, n2 and n3 are integers. There are therefore two modes (with different
polarizations) in the volume π3/V in ‘k-space’. Waves whose wavevectors have
magnitudes in the range k to k + dk have angular frequencies between ck and
c(k + dk). These can point in any direction in the positive octant of k-space so
the total number with angular frequency between ω and ω + dω is

2× ( 1
2πω2 dω/c3)(V/π3) = (Vω2/2π2c3) dω (8.45)

This must equal g′(ω) dω, where g′ is the density of states, so we can combine
this with (8.34) and (8.35) to calculate the transition rate as

Wsp = (e2ω3/8πε0}c3)|z12|2 (8.46)

We note that this rate is proportional to |z12|2 so spontaneous emission is subject
to the same selection rules as applied to stimulated emission and absorption
discussed earlier.

8.5 The Ehrenfest theorem

The time-dependent Schrödinger equation can be used to calculate the rate of
change of the expectation value of a physical quantity

∂〈Q̂〉
∂ t

= ∂

∂ t

∫
�∗ Q̂� dτ

=
∫ [

∂�∗

∂ t
Q̂� +�∗ Q̂

∂�

∂ t
+�∗ ∂ Q̂

∂ t
�

]
dτ

We can now substitute expressions for ∂�/∂ t and ∂�∗/∂ t obtained from the
time-dependent Schrödinger equation (8.1) and its complex conjugate to get

∂〈Q̂〉
∂ t

=
∫

i

}
[(Q̂�)Ĥ ∗�∗ −�∗ Q̂ Ĥ�] dτ +

〈
∂ Q̂

∂ t

〉

= i

}

∫
[�∗(Ĥ Q̂ − Q̂ Ĥ )�] dτ +

〈
∂ Q̂

∂ t

〉

using the Hermitian property of Ĥ . That is

∂〈Q̂〉
∂ t

= i

}
〈[Ĥ , Q̂]〉 +

〈
∂ Q̂

∂ t

〉
(8.47)
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where [Ĥ , Q̂] is the commutator of Q̂ and Ĥ . Thus the rate of change of the
expectation value of the physical quantity represented by Q̂ is equal to a sum of
two terms: the first is proportional to the expectation value of the commutator
of Q̂ with the Hamiltonian of the system, Ĥ , while the second is equal to the
expectation value of ∂ Q̂/∂ t . This result is known as the Ehrenfest theorem. We
note that in the particular case where Q̂ is time independent and commutes with
Ĥ , the expectation value of Q̂ is constant, in agreement with the fact that the
value of the corresponding physical quantity is conserved (cf. section 4.6).

We can use the Ehrenfest theorem to investigate further the connection
between quantum and classical mechanics. In general we find that the expectation
values of the quantum-mechanical quantities are related by the classical equations
of motion. For example, the fact that energy is conserved in a closed system
follows by putting Q̂ equal to Ĥ , remembering that in such a case the latter is
time independent. Alternatively, if we put Q̂ equal to x̂ , (8.47) gives

∂〈x̂〉
∂ t

= i

}

〈[(
P̂2

x

2m
+ V

)
, X̂

]〉

We know that X̂ ≡ x commutes with V (x) and that [P̂x , x] = −i}, so that

[P̂2
x , x] = P̂2

x x − x P̂2
x

= P̂x (−i}+ x P̂x)− (i}+ P̂x x)P̂x

= −2i}P̂x

so that
∂〈x̂〉
∂ t

=
〈

P̂x

m

〉
(8.48)

which corresponds to the classical definition of momentum. Similarly if Q̂ = P̂x ,

∂〈P̂x 〉
∂ t

= i

}
[V (x), Px ] = −

〈
∂V

∂x

〉
(8.49)

where we have used the relation P̂x = −i}∂/∂x . Equation (8.49) simply states
that the rate of change in the expectation value of the x component of momentum
is equal to the expectation value of the x component of the applied force, which
of course corresponds to Newton’s second law.

Thus the correspondence principle follows from the Ehrenfest theorem,
provided we can identify the quantum-mechanical expectation value of a physical
quantity with its value in classical mechanics. In most classical systems
this condition is clearly satisfied: macroscopic particles are normally strongly
localized and wavefunction spreads are therefore very narrow compared with the
dimensions of the measuring apparatus.
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However, there are some circumstances in which the results of quantum
mechanics do not go over to those of classical mechanics in such a direct way.
Consider, for example, the case of a particle passing through the two slits of a
Young’s interference experiment; its wavefunction will be finite over the area of
each slit, but the expectation value of its position corresponds to a point midway
between the slits. At this point the wavefunction is zero and the particle is
never observed at a position corresponding to this expectation value—however
far apart the slits or however massive the particle. What happens in this case
is that the interference effects associated with the delocalization of the particle
become harder and harder to observe in the classical limit and the system becomes
indistinguishable from one in which the particle passes through either one of
the two slits, but not both. Nevertheless, there is a theoretical possibility that a
macroscopic system could be constructed which displayed quantum-mechanical
delocalization and whose properties could not be accounted for classically. Some
of the conceptual problems associated with such macroscopic quantum effects are
discussed in chapter 13.

8.6 The ammonia maser

A physical system that illustrates a number of the quantum-mechanical results
discussed in this and previous chapters is the ammonia maser. A maser is a device
that amplifies microwave radiation. It relies on the provision of a medium (in this
case ammonia) that has more of its molecules in an excited state than there are
in the ground state. Radiation of the correct frequency then induces transitions to
the ground state and the consequent stimulated emission of more radiation. The
way in which this process operates in the case of ammonia will be described in
this section.

The ammonia molecule consists of a nitrogen atom bound chemically to
three hydrogen atoms in such a way that the nitrogen atom lies a little above
(or below) the centre of the equilateral triangle formed by the hydrogens (see
figure 8.4). The exact wavefunction describing the four nuclei and ten electrons
in the ammonia molecule is very complicated and would require considerable
computational effort to evaluate—if indeed this were even possible. However,
all we need to know for our present discussion is that there are two states which
are equivalent apart from the position (up or down) of the nitrogen nucleus (see
figure 8.4) and the fact that it is possible for the atom to pass from one position to
the other by quantum-mechanical tunnelling.1

However, neither of the two states described so far is an energy eigenstate.
This follows from the fact that the molecule is able to tunnel between the two
configurations and that, as the potential is centrosymmetric, the energy eigenstates
1 It might be thought that the transition from the ‘up state’ to the ‘down state’ could be effected
simply by rotating the molecule about an axis in the plane of the hydrogens. In fact in the relevant
states the molecule possesses angular momentum about its symmetry axis which stabilizes its spatial
orientation gyroscopically.
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Figure 8.4. The geometrical configuration of the ammonia molecule in states where the
nitrogen atom is above (continuous lines) and below (broken lines) the plane of the three
hydrogens.

must have definite parity—that is, they must be either symmetric or antisymmetric
with respect to reflection. If we call the wavefunctions corresponding to the
nitrogen in the up and down positions φ1 and φ2 respectively, we can make linear
combinations (u1 and u2) of these which do have definite parity and which are
then reasonable approximations to the energy eigenfunctions:

u1 = 1√
2
(φ1 + φ2)

u2 = 1√
2
(φ1 − φ2)

(8.50)

It follows that, if we know the position of the nitrogen atom relative to the
hydrogens so fixing the wavefunction as φ1 or φ2, the molecule cannot be in a state
of definite energy. However, if we know the energy, the nitrogen position must be
uncertain. We note in passing that, although a nitrogen atom is not macroscopic,
it is a lot heavier than an electron, and the fact that it can be delocalized is
an interesting confirmation of the application of quantum mechanics to such an
object.

The eigenfunction u1 is symmetric and corresponds to the ground state of
the system whose energy we represent by E1, while u2 is antisymmetric and is
therefore an excited state (energy E2). It turns out that the energy difference
corresponds to a frequency in the microwave region and we should therefore
be able to construct a maser provided that we can produce nitrogen molecules
entirely, or at least predominantly, in the state u2. Now, at normal temperatures,
the average thermal energy of the molecules is much greater than the difference
in energy between the two states, so if their energy were to be measured, an
approximately equal number would be found in each state. In order to isolate
a set of molecules all in the state u2, we first create a molecular beam by allowing
the gas to emerge from a container through a fine hole (see figure 8.5). We
then measure the energy of each molecule, so placing it in one of the energy
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Figure 8.5. The ammonia maser. Ammonia molecules leave the container C and pass
through a region of non-uniform electric field E . Excited molecules are deviated towards
the lower field region and directed into a microwave cavity M .

eigenstates. This is achieved by passing the beam through a region where there
is a static non-uniform electric field, the effect of which we will now explain by
considering the electrical polarizability of the ammonia molecule.

A general expression for the polarizability of a one-electron atom was
obtained by perturbation theory in chapter 7 (equation (7.29)). This can be applied
to an ammonia molecule, provided the operator ez representing the instantaneous
electric dipole moment of the atom is replaced by the corresponding molecular
property. It is known that the electrons in the ammonia molecule are distributed
in such a way that the nitrogen atom carries a net negative charge, which we
denote by −q , while a positive charge of equal magnitude is distributed between
the three hydrogens. It follows that, if the nitrogen atom were at a distance x from
the plane containing the hydrogens the molecule would have a dipole moment qx ,
and this quantity corresponds with ez in the atomic case. Moreover, the difference
between the energies of the states u1 and u2 is much less than that between either
of them and any other energy state of the system. These latter ones can therefore
be ignored when considering the perturbation expression for the polarizabilities
of the states which are therefore

α1 = 2q2|x12|2
E2 − E1

α2 = 2q2|x12|2
E1 − E2


 (8.51)

where x12 =
∫

u∗1xu2 dτ .2 It follows that α1 is positive while α2 is negative, and
the application of an electric field will induce a net dipole moment parallel to the
field in the first case and antiparallel in the second. The application of a non-
uniform field therefore sorts the molecules into two groups: one, consisting of
molecules in their ground state, moves to a region of high field intensity, while the
other, containing only molecules in the excited state, moves to low-field regions.

2 Of course the field must be weak enough for the polarization energy to be much less than E2 − E1,
otherwise the two energy eigenstates would be mixed as in the Stark effect.
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This process is analogous to the measurement of a spin component using a non-
uniform magnetic field in the Stern–Gerlach experiment.

Having separated out a beam of excited molecules, the next step is to direct
it into a microwave cavity whose dimensions are such that its natural frequency
equals that associated with the transition. Microwave radiation of this frequency
which enters the cavity will therefore stimulate the emission of more radiation, re-
sulting in the required amplification. In fact, the transition probability is typically
so large and the line width in the cavity is so small, that quantum oscillations of
the type described earlier in this chapter can occur: in one half-cycle of such an
oscillation when the molecules are predominantly excited, amplification results,
but in the other when the molecules are largely in the ground state, the incident
radiation is absorbed. To avoid this, the speed of the molecular beam is cho-
sen so that each molecule is in the cavity for a time approximately equal to half
the period of the quantum oscillation; since on entry it is in its excited state, the
absorption phase is thereby eliminated and continuous amplification results.

Problems

8.1 The wavefunction of a particle in a one-dimensional infinite-sided potential well of width 2a is
ψ = 2−1/2(u1 + u2) at time t = 0 where u1 and u2 are the two lowest energy eigenfunctions. Find
an expression for the position probability distribution as a function of time and show that it is periodic
with angular frequency ω = 3π2

}/8ma2. Sketch this probability distribution at times 0, π/2ω, π/ω
and 3π/2ω.

8.2 Show that the expectation value of the position of a particle in a harmonic oscillator potential
oscillates sinusoidally with the classical frequency if the system is not in an energy eigenstate.

8.3 Show that the expectation value of the angular momentum of an electron in a magnetic field
B precesses about the direction of B with an angular frequency eB/me , unless it is in an energy
eigenstate.

8.4 What is the probability of finding the resulting 3He+ ion in (i) its 2s and (ii) one of its 2p states,
following the β decay of a 3H atom initially in its ground state?

8.5 The spring constant of a harmonic oscillator in its ground state is suddenly doubled. Calculate the
probability that a subsequent energy measurement will find the new oscillator in (i) its ground state,
(ii) its first excited state, and (iii) its second excited state.

8.6 In the experiment on spin interference described in section 8.1, the magnetic fields used had a
magnitude of 0.5T and the path lengths were each 7 × 10−5 m. Show that a minimum in the centre
of the diffraction pattern is to be expected for neutrons with a wavelength of 3.89 × 10−10 m, given
that the neutron has a magnetic moment of magnitude 1.91 (e}/2mn ), mn being the neutron mass.

8.7 A particle, initially in an energy eigenstate of an infinite-sided potential well, is subject to a
perturbation of the form V0x cos ωt . Show that transitions are possible between the states un and
um only if n + m is odd.

8.8 The amplitude H ′′ associated with magnetic dipole transitions turns out to be proportional to the
operator representing the angular-momentum vector. Show that in a one-electron atom the selection
rules for such transitions are �l = 0, �m = ±1 or 0. Which of these apply when the angular-
momentum vector is (i) parallel and (ii) perpendicular to the z axis?

Hint: Express Lx and L y in terms of ladder operators.



180 Time dependence

8.9 Given that y Hn = 1
2 Hn+1 + nHn−1 where the Hn’s are Hermite polynomials, show that the

selection rule for electric dipole transitions in a one-dimensional harmonic oscillator is �n = ±1.

8.10 A certain physical system has a Hamiltonian operator of the form Ĥ0 + Ĥ ′′ cosωt where Ĥ0
and Ĥ ′′ are time independent, but H ′′ need not be a small perturbation. The operator Ĥ0 has
only two eigenstates whose eigenfunctions are u1 and u2 respectively. Show that the expression
au1 exp(−i E1t/})+ bu2 exp(−i E2t/}) is a solution to the time-dependent Schrödinger equation in
this case if

da

dt
= b

i}
H ′′21 cos ωteiω21 t

and
db

dt
= a

i}
H ′′21 cos ωteiω12 t

in the usual notation, provided H ′′11 = H ′′22 = 0. Show that if ω = ω12 and if high-frequency terms
can be ignored, then

a = cos("t − φ) b = sin("t − φ)

are solutions to these equations where " = |H ′′12|/2} and φ is a constant. Compare these results with
the discussion of quantum oscillations in the text.

8.11 A particle moves in a one-dimensional potential well given by

V = V0 (−a 6 x 6 a) V = 0 (a < |x| < b) V = ∞ (|x| > b)

Assuming that the magnitudes of a, b, and V0 are such that the ground-state energy is less than V0
and that there is a small, but finite, probability of tunnelling through the central barrier, draw sketch
graphs of the two lowest energy eigenfunctions of this system. Discuss the evolution in time of such a
system if the particle is known to be initially on one side of the barrier. Consider the response of this
system to a perturbation whose frequency corresponds to the difference between the energies of the
two lowest states and compare the properties of this system with those of the ammonia molecule.



Chapter 9

Scattering

In this chapter we discuss the quantum mechanics of the scattering of particles
by a fixed object. Scattering is a very important feature of many physical
processes and is nearly always a part of the process of performing and recording
an experimental result. Thus when we perform an x-ray diffraction experiment
we record the diffraction pattern created when x-rays are scattered by a crystal,
while nearly all the information we possess about the energy levels and structure
of nuclei and fundamental particles has been obtained from experiments in which
beams of particles (e.g. protons or neutrons) are scattered from targets containing
the nuclei or particles under investigation. Indeed any visual observation we
make simply by looking at something involves the detection by our eyes of light
scattered from the object we are looking at. It is clearly important therefore that
we understand something of the quantum mechanics of the scattering processes,
and this will be the aim of the present chapter.

We shall begin our study of the quantum mechanics of scattering by a
consideration of a simple one-dimensional example which will illustrate a number
of the points to be taken up in the subsequent discussion of three-dimensional
systems. We shall introduce the latter by some general considerations; this will
be followed by a description of the Born approximation in which the scattering
process is treated as a perturbation, and we shall finally introduce the method
known as partial wave analysis, which is particularly useful in the description of
the scattering of plane waves by spherical objects. Throughout this chapter we
shall assume that the particles being scattered are of a different type from the
object or particle doing the scattering, and we shall briefly discuss the particular
features that arise in the case of collisions between identical particles towards the
end of chapter 10.

9.1 Scattering in one dimension

Scattering experiments are usually performed using beams of particles all initially
moving with the same speed in the same direction, so we begin our study by
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considering the wavefunction of a particle moving with momentum p in the
positive x direction. We know this must be an eigenfunction of the momentum
operator P̂x = −i}∂/∂x so that

ψk(x) = Ak exp(ikx) (9.1)

where the momentum eigenvalue is }k. Wavefunctions corresponding to different
values of k should be orthogonal and the constants Ak should be chosen to
ensure that the wavefunctions are normalized. However, functions of the form
(9.1) extend throughout the one-dimensional space and the usual normalization
procedure would imply that A = 0—because, if the particle can be anywhere
between plus and minus infinity with equal probability, the probability of finding
it in the vicinity of any particular point should be zero. The difficulty is associated
with the fact that the eigenvalues form a continuous set, and in chapter 4 we
discussed how such problems could be treated using delta-function normalization.
We now take a different approach which consists of redefining ψk so as to
represent a beam containing many particles rather than a single particle, and we
assume that the average separation of the particles in the beam is L. If we now
normalize ψk so that |ψk(x)|2 dx represents the probability of finding any particle
in the region between x and x + dx we get

∫ L

0
ψ∗k ψk dx = 1 (9.2)

and hence, substituting from (9.1)

ψk = L−1/2 exp(ikx) (9.3)

It would clearly be very convenient if the orthogonality condition could be
expressed in a similar manner so that

∫ L

0
ψ∗k ψk′ dx = δkk′ (9.4)

Substitution of (9.3) into the left-hand side of (9.4) shows that the latter equation
can be valid only if the values of k are restricted so that

k = 2nπ/L (9.5)

where n is an integer. We note that this condition is identical to that derived in our
discussion of the one-dimensional solid in chapter 7 where we imposed ‘periodic
boundary conditions’ so that ψ(x + L) = ψ(x) and we shall assume these to
be valid here also. As we discussed in chapter 7, no physical significance should
be attached to the periodic boundary conditions: they are a mathematical device
which enables us to impose orthonormality on free-particle wavefunctions and
hence to calculate properties such as the density of states (see later).
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Particle flux

A property of particle beams that will be particularly useful in the subsequent
discussion is known as particle flux. In one dimension this is defined as the
average number of particles passing a point per unit time and is represented by #.
If the particles are in a momentum eigenstate, # equals the number of particles
per unit length multiplied by the particle velocity: that is,

# = }k/mL (9.6)

where m is the particle mass. We now obtain an expression for the flux in the
general case where the one-dimensional wavefunction is �(x, t).

Consider a region of the x axis between the points x = x1 and x = x2 where
x2 > x1. The probability of finding a particle in this region is P where

P =
∫ x2

x1

ψ∗ψ dx (9.7)

Assuming that particles cannot be created or destroyed, the net flux of particles
into this region must be equal to the rate of change in time of P . It follows that

#(x1)− #(x2) = ∂P

∂ t
=

∫ x2

x1

(
�∗

∂�

∂ t
+�

∂�∗

∂ t

)
dx (9.8)

We can now substitute for ∂�/∂ t and ∂�∗/∂ t from the time-dependent
Schrödinger equation (8.1) to get

#(x1)− #(x2) = i}

2m

∫ x2

x1

(
�∗ ∂

2�

∂x2
−�

∂2�∗

∂x2

)
dx (9.9)

where terms involving the potential energy have cancelled each other out. We
now integrate by parts to obtain

#(x1)− #(x2) = i}

2m

[
�∗ ∂�

∂x
− �

∂�∗

∂x

]x2

x1

(9.10)

Equation (9.10) is valid for all pairs of points x1 and x2, so the flux past the point
x must be given by

#(x) = − i}

2m

(
�∗ ∂�

∂x
−�

∂�∗

∂x

)
(9.11)

We note that, if we substitute the momentum eigenfunction (9.3) into (9.11), we
get the same expression (9.6) for the particle flux as that obtained earlier.
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Figure 9.1. The potential V and the real parts of the incident, reflected, and transmitted
waves in the case of the scattering of particles by a potential step.

Scattering by a potential step

We now consider the case where a beam of particles is scattered by a simple
potential step of the form illustrated in figure 9.1. That is, we are considering the
motion of particles in a potential V (x) where

V (x) = 0 x 6 0

V (x) = V0 x > 0

}
(9.12)

We are interested in the steady-state solution to the problem, ignoring any
transient effects associated with the ‘switching on’ of the beam, which means
that, as the potential (9.12) is time independent, the wavefunction should be one
of the energy eigenfunctions of the system. Now in the region where the potential
is zero the momentum eigenfunctions with eigenvalues ±}k are also degenerate
eigenfunctions of the energy with energy }

2k2/2m. A general expression for the
energy eigenfunction in the region x < 0 is therefore

u(x) = L−1/2(eikx + αe−ikx ) (9.13)

where α is a constant. In the study of scattering we try to predict the results
of experiments that measure the flux of the incident and scattered wavefunctions
separately. In one dimension this means that we have one detector in the region
x < 0 which identifies and counts particles moving in (say) the positive direction
while leaving the others undisturbed, and another which performs a similar
measurement on the particles moving in the negative direction. The energy
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eigenfunction (9.13) then represents the wavefunction before these measurements
are performed and the probabilities of different results can be predicted using
the standard procedure set out in the basic postulates. Thus, in the present case
(9.13) tells us that a measurement of the flux of particles moving in the positive
k direction will produce a result }k/mL while that in the negative direction is
|α|2}k/mL, so that the probability of a particular particle being scattered is |α|2.

To obtain an expression for the constant α we must consider the
wavefunction in the region x > 0 where its form depends on whether the incident
kinetic energy E = }

2k2/2m is greater or less than V0. We shall consider the
latter case first when the solution to the time-independent Schrödinger equation
is easily seen to be

u(x) = C exp(−κx) x > 0 (9.14)

where κ = [2m(V0 − E)/}2]1/2 and we have rejected the corresponding solution
with a positive exponent because it implies a divergence of u as x tends to infinity,
in breach of the boundary conditions applying to one-dimensional systems.

We can now apply the conditions that the wavefunction and its first spatial
derivative be continuous at x = 0 (cf. chapter 2) to get

L−1/2(1+ α) = C

L−1/2ik(1− α) = −κC

and hence
α = −(κ + ik)/(κ − ik)

C = −[2ik/(κ − ik)]L−1/2

}
(9.15)

The scattering probability |α|2 is therefore seen to be unity so that all the particles
incident on the potential step are scattered and none are transmitted. This point
can be confirmed by substituting from (9.14) into (9.11) which produces a zero
value for the transmitted flux. The net result of the scattering is therefore to
produce a scattered wave whose amplitude is the same as that of the incident
wave. However, its phase at the point x = 0 is increased relative to the phase of
the incident wave by an amount δ, where δ is the phase of α. Using (9.15), we get

δ = tan−1[2kκ/(κ2 − k2)]
Clearly a similar result to this will apply in any one-dimensional scattering
problem where the potential barrier is high enough to prevent the particles from
being transmitted, even if it does not have the simple step form. The total
wavefunction in a region on the incident side of the scatterer where the potential
is zero will always consist of a sum of incident and reflected plane waves of equal
amplitude, and the detailed nature of the scattering potential will affect only the
phase shift δ. Similar phase shifts turn out to be of considerable importance in
three-dimensional scattering and we shall return to this concept later in the chapter
when we discuss the method of ‘partial waves’.
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We now turn to the case where the kinetic energy of the particles is greater
than the height of the barrier so that we expect there to be a finite probability of
the particle being transmitted. The wavefunction in the region x < 0 still has the
general form (9.13) while the transmitted wave is clearly

u(x) = C ′ exp(ik ′x) (9.16)

where
k ′ = [2m(E − V0)/}

2]1/2

and C ′ is obtained along with α by applying the continuity conditions in the same
way as before, leading to

α = k − k ′

k + k ′

C ′ = 2k

k + k ′
L−1/2


 (9.17)

The reflected flux is therefore

}k

mL
|α|2 = }k

mL

(k − k ′)2

(k + k ′)2

while the transmitted flux is

}k ′

m
|C ′|2 = }k

mL

4kk ′

(k + k ′)2

It follows directly that the scattering and transmission probabilities are

(k − k ′)2

(k + k ′)2
and

4kk ′

(k + k ′)2

respectively and we note that the sum of these two probabilities is equal to one as
expected.

9.2 Scattering in three dimensions

We turn to the three-dimensional case and begin with some general statements
about particle flux and scattering probability. Whereas in one dimension the
particle flux was defined as the number of particles passing a point per second, in
three dimensions we define flux density as a vector quantity � such that � · dA
is the total flux of particles passing through the element of area dA per second.
Clearly the direction of � corresponds to the direction of motion of the particles
at the point under consideration, while its magnitude represents the number of
particles crossing unit area per second. We shall now obtain an expression for �
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in the case of a system represented by the wavefunction �(r, t) using a procedure
similar to that employed in the one-dimensional case.

Consider a volume V enclosed by a surface A. The net number of particles
entering V through A in unit time must be equal to the rate of increase in the
probability of finding a particle in V . That is

−
∮

A
�(r) · dA = ∂

∂ t

∫
V
�∗� dτ

=
∫

V

(
∂�∗

∂ t
� +�∗ ∂�

∂ t

)
dτ (9.18)

Following a procedure similar to that applied in the one-dimensional case—
(9.9)–(9.11)—we substitute for (∂�/∂ t) and (∂�∗/∂ t) from the time-dependent
Schrödinger equation, the potential energy terms cancel out as before and we get∮

A
#(r) · dA = − i}

2m

∫
V
(�∗∇2� −�∇2�∗) dτ

= − i}

2m

∫
A
(�∗∇� −�∇�∗) · dA (9.19)

where we have applied the theorem in vector calculus known as Green’s theorem
which corresponds to integration by parts in three dimensions. The expression for
�(r) follows directly, remembering that (9.19) is valid for any closed surface:

�(r) = − i}

2m
(�∗∇� −�∇�∗) (9.20)

which is therefore the three-dimensional equivalent of (9.11).
As an example we consider the special case of a beam of free particles of

momentum }k whose wavefunction is

�(r, t) = V−1/2 exp i(k · r− Et/}) (9.21)

where E = }
2k2/2m and the beam has been normalized so that it contains, on

average, one particle in a volume V (which is, of course, not necessarily the same
as the volume V used previously). Substituting from (9.21) into (9.20) we have

# = }k
mV

(9.22)

which is the same expression as would be obtained from elementary
considerations remembering that in this case all particles have velocity }k/m.

Scattering cross section

If a beam of particles is incident on a scattering object some particles will be
scattered while others will pass on undisturbed, and we can therefore define a
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probability that scattering will take place. Clearly the probability of scattering
will be proportional to the flux density of the incident beam, and the probability
that a particle will be scattered from a beam of unit flux density—that is, where
one particle passes through unit area per second—in unit time is known as the
scattering cross section, σ . It follows that σ has the dimensions of area and, in
the classical case of a beam of small particles that interact with a scattering object
only when they strike it, it is equal to the geometrical cross section of the body
in a plane perpendicular to the beam. In quantum mechanics, however, such a
simple interpretation is rarely possible.

We are often interested, not only in the total probability of scattering, but also
in the probability that the particles are scattered in a particular direction, which is
usually defined by the spherical polar angles θ and φ referred to the direction of
the incident beam as the polar axis. To this end we define the differential cross
section σ(θ, φ) such that, for an incident beam of unit flux density, σ(θ, φ) d" is
the probability per second of a particle being scattered into the element of solid
angle d" around the direction defined by θ and φ. If we express d" in terms of
θ and φ in the usual way

d" = sin θ dθ dφ (9.23)

It follows directly from the definitions of the total and differential cross sections
that

σ =
∫

σ(θ, φ) d"

=
∫ ∫

σ(θ, φ) sin θ dθ dφ (9.24)

In many cases the problem has cylindrical symmetry about an axis parallel to
the incident beam and the differential cross section is consequently independent
of φ and written as σ(θ). In this case the probability per second of scattering
into the element of angle dθ around θ , irrespective of the value of φ, is given by
2πσ(θ) sin θ dθ .

Centre-of-mass frame

Finally in this section we note that scattering experiments are often carried out
using beams of particles whose mass is comparable to the mass of the particles in
the target (e.g. the scattering of neutrons by the protons in hydrogen referred to
near the end of this chapter). As is shown in chapter 10, such a situation can be
treated by considering the corresponding case of a particle of mass µ equal to the
reduced mass of the two particles—that is, µ = m1m2/(m1 + m2)—interacting
with a fixed target. We can therefore apply all the theory relating to the scattering
of particles from fixed objects to this case and obtain results referred to a frame
of reference attached to the centre of mass of the system, which may then be
transferred back into the laboratory frame by standard methods.
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9.3 The Born approximation

We saw in the earlier discussion of one-dimensional scattering that the energy
eigenfunction of the system could be expressed as linear combinations of incident
and scattered waves, and the scattering probability could then be calculated from
the expansion coefficients. A similar procedure can, in principle, be followed
in the three-dimensional case, but the initial solution of the time-independent
Schrödinger equation for the energy eigenfunctions is generally difficult and often
impossible. In the next section we shall discuss a method for doing this in the
case of a spherically symmetric scattering potential, but for the moment we shall
describe a procedure known as the Born approximation. This method is based on
first-order perturbation theory and is usually valid when the average energy of the
interaction between an incident particle and the scatterer is much smaller than the
particle’s kinetic energy.

We consider the case of a beam of particles approaching a scattering object
along a direction parallel to the vector k0. Except in the vicinity of the scatterer,
the potential is zero and the incident beam can therefore be described by a plane
wavefunction whose time-independent part is u0 where

u0 = V−1/2 exp(ik0 · r) (9.25)

We have assumed this wavefunction to be normalized so that there is, on average,
one particle in the volume V , and we impose periodic boundary conditions,
similar to those applied in the one-dimensional case. The allowed values of the
Cartesian components of k0 are therefore

k0x = 2n1π/L1 k0y = 2n2π/L2 k0z = 2n3π/L3 (9.26)

where n1, n2, and n3 are integers and L1 L2 L3 = V . We now imagine that
scattering has taken place and that a scattered particle has been detected moving
in some direction k (cf. figure 9.2). The normalized wavefunction will now be u1
where

u1 = V−1/2 exp(ik · r) (9.27)

and boundary conditions similar to (9.26) are imposed on the Cartesian
components of k. Remembering that the scattering potential is to be treated
as a perturbation, we see that u0 and u1 are both energy eigenfunctions of the
unperturbed (zero-potential everywhere) problem. We can therefore represent
the scattering process as a transition from the state u0 to the state u1 and relate
the scattering probability and hence the scattering cross section to the transition
probability.

We previously calculated an expression for the transition probability when
we considered time-dependent perturbation theory in chapter 8. Although the
potential is not time dependent in the present case, an identical argument can be
applied, after putting ω = 0, as far as equation (8.29). At this point we see that
transitions occur only if the energies of the initial and final states are identical
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Figure 9.2. The relationship between the scattering angle (θ), the scattering vector (K),
and the wavevectors of the incident (k0) and scattered (k) waves.

(that is, if ωmn = 0, so that |k0| = |k| and the scattering is elastic) when both
of the terms on the right-hand side of (8.29) are simultaneously non-zero. This
introduces a factor of two into the subsequent equations and a consequent factor of
four into the Fermi-golden-rule expression (8.34) for the transition rate W which
is therefore

W = 2π

}2
|Ukk0 |2g(ω) (9.28)

The matrix element Ukk0 is calculated using the approximate eigenfunctions u0
and u1 and the scattering potential U(r) (note that we now use U to represent the
potential in order to avoid confusion with the volume V ):

Ukk0 =
∫

u∗1U(r)u0 dτ

= 1

V

∫
U(r) exp(−iK · r) dτ (9.29)

where K = k− k0 and is known as the scattering vector.
To calculate the differential cross section using (9.28) we must obtain an

expression for the number of states in the angular frequency range ω to ω + dω
available to a particle scattered into the element of solid angle d". It follows
directly from the restrictions on the allowed values of k (9.26) that the number of
states in an element of volume d3k = dkx dky dkz in k-space is equal to

(L1 L2 L3/8π3) d3k = (V/8π3) d3k (9.30)

where we have assumed that V is large enough for the volume of the element d3k
to be large compared with that of the k-space cell, 8π3/V . If we now consider the
states whose wavevectors lie in the element of solid angle d" around the direction
k and whose magnitudes lie between k and k+dk, these occupy a k-space volume
equal to k2 d" dk and the total number of such states is therefore

(V/8π3)k2 d" dk (9.31)
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But we know that the energy of a free particle is E = }
2k2/2m so that

d E = (}2k/m) dk

and therefore dω = (}k/m) dk where E = }ω. Writing the required density of
states as dg to emphasize the fact that it refers to an element of solid angle d",
the number of states with angular frequency between ω and ω + dω, and whose
k-vectors lie within d", equals dg dω and we have

dg = mkV

8π3}
d" (9.32)

We can now obtain an expression for the probability per unit time (dW ) of a
particle being scattered from a state u0 to a state whose wavevector lies within the
element of solid angle d" around the direction k, by substituting the expression
(9.32) for dg in place of g in (9.28) and using (9.29):

dW = mk

4π2V}3

∣∣∣∣
∫

U(r)e−iK·r dτ

∣∣∣∣
2

d" (9.33)

Finally, to calculate the differential cross section we must divide the right-hand
side of (9.33) by the magnitude of the incident flux (}k/mV ) and by d" to give

σ(θ, φ) = m2

4π2}4

∣∣∣∣
∫

U(r)e−iK·r dτ

∣∣∣∣
2

(9.34)

Thus, provided we know the form of the scattering potential, the scattering cross
section can be calculated by evaluating the Fourier transform of U(r) and hence
the right-hand side of (9.34). This result is equivalent to that which would be
obtained on the basis of Fraunhofer diffraction theory used in optics, where the
amplitude of the scattered light as a function of scattering vector is proportional
to the Fourier transform of the diffracting object.

We shall shortly discuss a couple of examples of the application of the Born
approximation when the scattering potential is spherically symmetric, in which
case the volume integral in (9.34) can be partly evaluated using spherical polar
coordinates r , θ ′ and φ′ referred to the direction of K as polar axis. (NB: θ ′ and
φ′ should be distinguished from θ and φ which define the direction of k relative
to k0.) Thus∫

U(r)e−iK·r dτ =
∫ 2π

0

∫ π

0

∫ ∞

0
U(r)e−i K r cos θ ′r2 dr sin θ ′ dθ ′ dφ′

= 4π

K

∫ ∞

0
U(r)r sin Kr dr (9.35)

and the differential cross section becomes

σ(θ) = 4m2

}4K 2

∣∣∣∣
∫ ∞

0
U(r)r sin Kr dr

∣∣∣∣
2

(9.36)
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We note that the differential cross section is independent of φ and that its
dependence on θ is through the magnitude of the scattering vector K which is
seen from figure 9.2 to be equal to 2k0 sin(θ/2).

Example 9.1 Scattering by a spherical potential well or step Our first example
relates to scattering by a spherically symmetric potential given by

U(r) = 0 r > a

= U0 r 6 a

}
(9.37)

where U0 and a are constants. U0 may be negative (potential well) or positive
(potential step) but, in any case, it is to be assumed small enough for the Born
approximation to be applied. The more general case including larger U0 will
be treated by the method of partial waves towards the end of this chapter. The
potential is spherically symmetric so (9.36) can be used and the integral on the
right-hand side of this equation is

U0

∫ a

0
r sin Kr dr = U0(sin K a − K a cos K a)/K 2 (9.38)

This can be substituted into (9.36) to produce an expression for the scattering
cross section.

In the particular case where K a is much less than one, the trigonometric
terms can be expanded as series of ascending powers of K a and the first non-
vanishing term in (9.38) is equal to 1

3U0 K a3. The differential cross section in this
limit is then

σ(θ) = 4m2U2
0 a6

9}4
(9.39)

Thus, if the geometrical radius of the scatterer is much less than the wavelength
(λ = 2π/k) associated with the incident particles, K a will be small for all
scattering angles, the scattering will be isotropic (i.e. independent of θ ), and the
total cross section will be simply 4π times that given in (9.39). The fact that
objects whose dimensions are much less than λ scatter isotropically also follows
more generally from equation (9.34) where we see that if K · r is much less
than one for all values of r for which U is neither zero nor insignificantly small,
then the differential cross section is independent of angle. It is also in agreement
with the familiar phenomenon in optics in which light striking an object whose
dimensions are much smaller than the wavelength is scattered equally in all
directions.

Example 9.2 Rutherford scattering We now consider scattering by a potential
whose magnitude is inversely proportional to the distance from the origins of the
particle being scattered. That is,

U(r) = βr−1 (9.40)
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where β is a constant. This is known as Rutherford scattering because it can
be applied to the case of positively charged α particles approaching a target
containing atoms with positively charged nuclei (when β = 2Ze2/4πε0), and
this arrangement was first studied by Rutherford in 1911.

Substituting from (9.40) the integral in (9.36) becomes

β

∫ ∞

0
sin Kr dr = − β

K
[cos Kr ]∞0 (9.41)

The integral is indeterminate at its upper limit, but in practice the Coulomb
potential is always modified at large distances (e.g. due to screening by the atomic
electrons) so that at large r it falls off more rapidly than is implied by (9.40); the
integral is then negligibly small at large r and we obtain the following expression
for the differential cross section:

σ(θ) = 4m2β2

}4 K 4

= m2β2

4}4k4
0 sin4(θ/2)

= m2β2

4 p4
0 sin4(θ/2)

(9.42)

where p0 is the magnitude of the momentum of the incident particles and θ

is the angle between the incident and scattered directions as before. It was
Rutherford’s confirmation of this formula by the observation of the scattering of α
particles from gold foil that led to his postulate of the nuclear atom; of course this
development preceded quantum mechanics, but by a happy coincidence it turns
out that the classical and quantum expressions are identical in this case.

9.4 Partial wave analysis

In the final section of this chapter we consider an approach to the scattering
problem which is, in some ways, the opposite to that adopted in the Born
approximation. Whereas the latter expresses the cross section in terms of the
Fourier transform of the scattering potential—that is, the potential is expanded
as a linear combination of plane waves whose form matches that of the
wavefunctions of the incident and scattered particles—in partial wave analysis we
start with the eigenfunctions of the scattering potential and express the incident
plane wave as a linear combination of these. This method is particularly useful
if the scattering potential is spherically symmetric, and this is the only case we
shall consider. Unlike the Born approximation, no limitations are placed on the
strength of the interaction between the particle beam and the scatterer.

The principle of the method is similar to that adopted for the one-dimensional
example discussed earlier. We first obtain the wavefunction as an energy
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Figure 9.3. Particles passing through the collimator C are represented by a plane wave
which is scattered by the scatterer S. Only the scattered wave enters the detector D, but
there is a region around the scatterer, much larger than the scatterer itself, over which the
wavefunction is a linear combination of the incident and scattered waves.

eigenfunction whose eigenvalue equals the energy of the incident particles. This
is then expressed as a sum of a plane wave representing the incident beam and a
scattered wave, and we use the measurement postulate to calculate the differential
cross section as the ratio of the flux of the scattered wave through an element of
solid angle in a particular direction, to the flux density of the incident wave. For
this procedure to be applicable, the experimental measurement must distinguish
between the incident and scattered waves and a typical set-up to achieve this
is shown in figure 9.3. The incident beam is defined by a collimator whose
diameter is small compared with the distance from the scatterer to the detector,
so ensuring that particles cannot enter the detector without first being scattered,
and that the wavefunction in the region of the detector is therefore just that of the
scattered wave. However, the collimator diameter must be much larger than both
the wavelength of the incident beam and the dimensions of the scattering object.
This ensures both that the incident particles can be represented by a plane wave,
and also that there is a region around the scatterer, much larger than the scatterer
itself, over which the wavefunction is a linear combination of the incident wave
and scattered waves.

We begin our discussion by considering the form of the energy
eigenfunctions associated with a spherically symmetric potential U(r). This
problem was discussed in chapter 3, but at that point we restricted our attention to
bound states of potential wells where the total energy was found to be quantized.
In the scattering case, however, we are interested in wavefunctions representing
particles approaching the scatterer from a large distance and leaving it again.
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Thus, either the potential is such that binding is impossible (e.g. if it is repulsive
at all distances) or, if bound states do exist, the incident energy is too great for
binding to occur. This means that the energy levels of the scattering system are
not confined to a discrete set of values.

To obtain the energy eigenfunctions of eigenvalue E for a spherically
symmetric potential U(r), we must solve the time-independent Schrödinger
equation:

− }
2

2m
∇2u +U(r)u = Eu (9.43)

This equation can be separated into spherical polar coordinates just as was done
for a bound particle in chapter 3, by putting

u = R(r)Ylm(θ, φ) (9.44)

where the Ylm are spherical harmonics which are defined in that chapter and R is
obtained by solving the radial equation

− }
2

2m

1

r2

d

dr

(
r2 d R

dr

)
+ l(l + 1)}2

2mr2 R +U R = E R (9.45)

If we now define k and χ(r) so that R = χ/r and E = }
2k2/2m, (9.45) becomes

d2χ

dr2 +
(

k2 − l(l + 1)

r2 − 2mU

}2

)
χ = 0 (9.46)

In a scattering experiment we are interested in the wavefunction at a large distance
from the scattering object. We can therefore obtain a lot of information from the
asymptotic form of the solutions at large r when we can neglect the last two terms
in the bracket—assuming that the potential U(r) is effectively zero at large r ,
which is nearly always the case. Equation (9.46) then becomes

d2χ

dr2 + k2χ = 0 (9.47)

the general solution to which can be written as

χ = Aeikr + Be−ikr (9.48)

where A and B are constants. Using (9.44) we obtain the following expressions
for the asymptotic form of the energy eigenfunctions which we now write as uklm :

uklm = 1

r
(Aeikr + Be−ikr )Ylm(θ, φ) (9.49)

The energy eigenvalues are independent of the quantum numbers l and m,
so any linear combination of the functions uklm that have the same value of
k is also an eigenfunction. We shall shortly obtain such a linear combination



196 Scattering

with coefficients chosen so that it has the desired form of a sum of the incident
plane wave and a scattered wave, but in the meantime useful information can
be obtained by considering the case where the wavefunction is just one of
the eigenfunctions (9.49). The first term in this expression represents a wave
travelling radially outwards while the second corresponds to a wave travelling
inwards. This wavefunction would therefore apply to an experiment where
particles approached the scatterer along the radial direction with the numbers
coming in at different angles (θ, φ) proportional to |Ylm |2. The spherical
harmonics, Ylm are illustrated in figure 3.3 and we see, for example, that if
l = m = 0 all directions of approach are equally probable, while if l = 1 and
m = 0, the most favoured direction of approach is along the z axis. For such an
experiment, equation (9.49) tells us that the angular part of the wavefunction after
the scattering will be identical to that beforehand. The total number of particles
(N1) passing outwards per second through the surface of a sphere of radius r
centred on the origin is readily obtained by substituting the first term in (9.49)
(which we refer to below as u1) into the general expression for the flux (9.20) and
integrating over all solid angles, remembering that the radial component of ∇ψ is
∂ψ/∂r . Thus

N1 = − i}

2m

∫ 2π

0

∫ π

0

(
u∗1

∂u1

∂r
− u1

∂u∗1
∂r

)
r2 sin θ dθ dφ

= − i}

2m

(
2|A|2 ik

r2

)
r2

∫ 2π

0

∫ π

0
|Ylm |2 sin θ dθ dφ

= }k

m
|A|2 (9.50)

using the fact that the spherical harmonics are normalized. We note that N1 is
independent of r as it must be because no particles are lost or gained as the
distance from the scatterer is varied. The number flowing inward per second,
N2, is similarly calculated using the second term in (9.49) as

N2 = }k

m
|B|2 (9.51)

We now note that in a spherically symmetric system the energy eigenfunctions
(9.49) are also eigenfunctions of the total angular momentum and its z component
so that these two quantities must be conserved in an energy eigenstate. Thus no
change in the quantum numbers l and m can occur as a result of the scattering
process and all particles incident on the scatterer in a state described by the second
term in (9.49) must leave in a state described by the first term. It follows that N1
and N2 must be equal so that the constants A and B can differ only by a phase
factor. We can therefore write

uklm = A

r
[e−ikr − ei(kr−lπ+2δlm )]Ylm(θ, φ) (9.52)
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where we have defined the phase shift δlm (which is not the Kronecker delta in
this case) so that the phase factor relating B to A is − exp i(2δlm − lπ) as this
form is particularly convenient for the later discussion. We conclude that, if an
experiment were performed in which the incident particles had a wavefunction of
the form

A

r
e−ikr Ylm(θ, φ) (9.53)

then all the particles would be scattered and the angular part of the scattered wave
would be identical to that of the incident wave apart from a phase factor. The
actual value of the phase shift in any particular case is determined by the form
of the scattering potential. We note the similarity between this result and that
obtained in our earlier example of scattering by a potential step in one dimension
(cf. (9.15)).

In practice, of course, scattering experiments are not performed with incident
waves of the form (9.53) which represent particles approaching the scatterer
from all sides with an angular distribution determined by the spherical harmonic.
Instead, as we have seen earlier, beams of particles are used all of which are
travelling in the same (say the z) direction so that the incident wavefunction uk0
has the plane-wave form

uk0 = V−1/2 exp(ikz)

= V−1/2 exp(ikr cos θ) (9.54)

in spherical polar coordinates. In order to proceed further we have to express the
plane wave (9.54) as a linear combination of incoming and outgoing spherical
waves of the form discussed earlier. This is a standard mathematical expression
(see, for example, G. N. Watson, A Treatise on the Theory of Bessel Functions,
Cambridge University Press, 1958) which in the asymptotic limit of large r , has
the form

V−1/2eikr cos θ = 1

2
V−1/2

∞∑
l=0

(2l + 1)i2l+1
[

1

kr
e−ikr − 1

kr
ei(kr−lπ)

]
Pl (cos θ)

(9.55)
where Pl(cos θ) is the Legendre polynomial of order l and we remember from
chapter 3 that this is related to the spherical harmonic Yl0 by

Yl0 =
(

2l + 1

4π

)1/2

Pl(cos θ) (9.56)

If we compare (9.55) and (9.56) with (9.52) we see that a plane wave travelling
in the positive z direction can be expressed as a linear combination of incoming
and outgoing spherical waves—known as ‘partial waves’—which all have m = 0
and different values of l: the phase relation between the incoming and outgoing
partial waves in this case is such that the phase shifts δlm in (9.52) are all equal to
zero.
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Given that (9.55) is a representation of the incident plane wave we can
now consider how this is modified by the presence of the scattering object.
We remember that, in the steady state, the total wavefunction must be an
energy eigenfunction and must therefore be equal to a linear combination of the
eigenfunctions determined earlier (9.52) that have the same value of k as the
incident wave. Thus

ψ =
∑
lm

Alm

r
[e−ikr − ei(kr−lπ+2δlm )]Ylm(θ, φ) (9.57)

However, the total wavefunction can also be written as a sum of an incident and
a scattered wave and we know that when these are separated in the course of the
experiment (see figure 9.3) the latter represents only particles which are moving
outwards from the scatterer. The scattered wave therefore must not contain any
components with negative values of the exponent ikr and the coefficients of such
terms in the total wavefunction (9.57) must be the same as in the incident wave
(9.55). Thus we have, using (9.56),

Alm = 0 m �= 0

Al0 = 1
2 [4π(2l + 1)/V ]1/2i2l+1k−1

The first of these conditions confirms that the wavefunction is independent of φ,
as would be expected from the symmetry of the problem. If we now substitute
back into (9.57) and make use of (9.56) again we get

ψ = 1

2
V−1/2

∞∑
l=0

(2l + 1)i2l+1
[

1

kr
e−ikr − 1

kr
ei(kr+2δl−lπ)

]
Pl(cos θ) (9.58)

where we have rewritten δlm as δl , because (9.58) contains only terms with m = 0.
We now subtract the incident wave (9.55) from the total wavefunction (9.58) to
get an expression for the scattered wavefunction ψs which then has the form

ψs = V−1/2 1

r
eikr f (θ) (9.59)

where

f (θ) = 1

2k

∞∑
l=0

(2l + 1)i2l+1e−ilπ (1− e2iδl )Pl(cos θ)

= 1

k

∞∑
l=0

(2l + 1)eiδl sin δl Pl (cos θ) (9.60)

We note that if all the phase shifts δl are zero, f (θ) vanishes and there is no
scattering, which is consistent with the fact that the total wavefunction (9.58) is
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then identical to the incident plane wave (9.55). The extent and nature of the
scattering can therefore be calculated, using the plane shifts δl , and we shall
shortly discuss how to evaluate these in particular cases. First, however, we
use the results derived so far to obtain expressions for the differential and total
scattering cross sections.

To evaluate the differential cross section we must calculate the number (d N)

of scattered particles crossing an area r2 d" on the surface of a sphere of radius
r per second. Using the general expression for the flux (9.19) and remembering
that the radial component of ∇ψs is ∂ψs/∂r we get

d N = }k

mV
| f (θ)|2 d" (9.61)

The differential cross section σ(θ) is obtained by dividing d N by d" and by the
incident flux }k/mV (cf. (9.22)). Thus

σ(θ) = | f (θ)|2

= 1

k2

∣∣∣∣
∞∑

l=0

(2l + 1)eiδl sin δl Pl(cos θ)

∣∣∣∣
2

(9.62)

The total cross section σ is obtained by integrating (9.62) over all solid angles

σ = 2π
∫ π

0
σ(θ) sin θ dθ

= 4π

k2

∞∑
l=0

(2l + 1) sin2 δl (9.63)

where we have used the expression∫ π

0
Pl Pl′ sin θ dθ = 2l

2l + l
δll′ (9.64)

(δll′ now being the Kronecker delta) which follows from (9.56) and the fact that
the spherical harmonics are orthonormal.

Thus, if the phase shifts δl are known, the differential and total cross sections
can be calculated using (9.62) and (9.63). The phase shifts are determined by the
detailed size and shape of the scattering potential and their calculation is often a
long and complicated process which is only practicable using numerical methods.
However, in some cases all but a few of the phase shifts are zero or negligibly
small and expressions for the scattering cross sections are comparatively simple.
This is particularly true in the case of the scattering of low-energy particles when
often the only significant contributions to (9.62) and (9.63) are from terms with
l = 0. We can see why this is so from the following semi-classical argument. The
partial waves correspond to particular values of the angular momentum L given
by
√

l(l + 1)}; but classically a particle with this angular momentum and with
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linear momentum }k must pass the origin at a distance x such that L = }kx and
therefore

kx = √
l(l + 1)

We can conclude, therefore, that if the range of the scattering potential is of order
a (that is, U(r) is zero or negligibly small if r > a) the scattering of the lth partial
wave will not contribute unless

ka >
√

l(l + 1) (9.65)

For sufficiently small k (i.e. for sufficiently low energies) (9.65) is satisfied only
if l = 0 and this is the only partial wave to be significantly scattered. This case is
often referred to as s-wave scattering (cf. the terminology for l = 0 bound states
set out in chapter 3). It corresponds to a spherically symmetric wave and therefore
isotropic scattering, in agreement with the result obtained earlier using the Born
approximation in the special case where ka ! 1. A rigorous quantum-mechanical
proof of this involves investigating the form of the partial waves contributing to
the incident plane wave near the origin, rather than in the asymptotic limit of large
r . We shall not do this here, but simply quote the result that these are proportional
to (kr)l in the limit r → 0; in the case of small k the incident partial waves
are therefore small over the volume of the scattering potential and no appreciable
scattering results unless the condition (9.65) is satisfied.

We shall now discuss two examples of the application of the method of
partial waves and in each case we shall confine our consideration to s-wave
scattering.

Example 9.3 Scattering by hard spheres In this example we consider a scatterer
whose radius is a and which cannot be penetrated by the incident particles. Thus
the potential energy is given by

U(r) = ∞ r 6 a

U(r) = 0 r > a

}
(9.66)

It follows that the wavefunction must be zero for r 6 a and we remember that it
is continuous at the boundary r = a.

If we consider s-wave scattering only, it follows from (9.46) that the
asymptotic form of the wavefunction (9.52) is actually a solution to the
Schrödinger equation for all values of r greater than a so that the continuity of the
wavefunction at r = a requires that

e−ika − ei(ka+2δ0) = 0

and the phase shift δ0 is therefore given by

δ0 = −ka (9.67)
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The total cross section is obtained by substituting (9.67) into (9.63) to give

σ = 4π sin2 ka

k2

As the s-wave approximation is valid only in the limit ka ! 1, we can write this
as

σ � 4πa2 (9.68)

Classically we would expect the scattering cross section for such a hard-
sphere potential to be πa2, so we have another example of how quantum
mechanics produces results very different from those we would intuitively expect.
In the next example, we shall see how a finite scattering potential can produce
results that are even more dramatically different from classical expectations.

Example 9.4 Scattering by a potential well or step We now return to the
problem previously treated using the Born approximation where the potential is
given by

U = 0 r > a

U = U0 r 6 a

}
(9.69)

As before, U0 may be positive or negative, but now need not be small. We shall,
however, consider explicitly only the case where the incident energy E is greater
than U0 and also confine our attention to s-wave scattering where l = 0 and
ka ! 1; it follows that our results will not be applicable to the repulsive case
unless U0 ! }

2/2ma2.
In the region r 6 a the general solution to the Schrödinger equation when

l = 0 is readily seen to be

1

r
(A′ sin k ′r + B ′ cos k ′r) (9.70)

where
k ′ = [2m(E −U0)/}

2]1/2 (9.71)

and A′ and B ′ are constants. However, the wavefunction must be finite
everywhere, including the point r = 0, so the cosine term cannot exist and B ′
must be equal to zero. The l = 0 eigenfunction in the region r > a again has the
general form (9.52) and, if we apply the condition that both the wavefunction and
its first spatial derivative must be continuous at r = a, we get

A[e−ika − ei(ka+2δ0)] = A′ sin k ′a
ik A[−e−ika − ei(ka+2δ0)] = k ′A′ cos k ′a

If we divide the second of these equations by the first we get

ik[−e−ika − ei(ka+2δ0)]
e−ika − ei(ka+2δ0)

= k ′ cos k ′a
sin k ′a
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We can now multiply the numerator and denominator on the left-hand side by
exp(−iδ0) and express the resulting expressions in trigonometric form as

k cot(ka + δ0) = k ′ cot k ′a

which leads, after a little manipulation, to

cot δ0 = k tan ka tan k ′a + k ′

k tan k ′a − k ′ tan ka
(9.72)

� k ′ cot k ′a
k(1− k ′a cot k ′a)

(9.73)

where (9.73) is the limiting form of (9.72) when ka ! 1. The scattering cross
section for s-wave scattering is given by the l = 0 term in (9.63) as

σ = 4π

k2 sin2 δ0

= 4π

k2(1+ cot2 δ0)
(9.74)

using standard trigonometric identities. Thus, given k, a, and U0 we can calculate
cot δ0 and hence σ .

We note from (9.73) that if the magnitude of k ′a happens to be such that
k ′a cot k ′a = 1 (i.e. if k ′a = 4.49, 7.73, 10.9, . . .) cot δ0 will be infinite, the cross
section will be zero, and the incident particles will ‘diffract past’ the potential
without being significantly scattered. Clearly this condition can be satisfied
simultaneously with ka being small only if U0 is negative—that is, if we are
considering a potential well rather than a step. In such a case, the absence of
scattering means that the wavefunction inside the well fits smoothly onto the plane
wave outside. Clearly the potential well need not be square for this to occur, and
the phenomenon has been observed experimentally in the case of the scattering
of electrons by rare-gas atoms when it is known as the Ramsauer–Townsend
effect: electrons of energy about 0.7 eV pass through helium gas without being
significantly scattered.

The opposite extreme to this case occurs when the parameters are such that
k ′a is approximately equal to an odd multiple of π/2 so that cot k ′a is small. We
can then ignore the second term in the denominator of (9.73) and write the cross
section as

σ = 4π

k2 + k ′2 cot2 k ′a
(9.75)

and we note that, as ka and cot k ′a are both much less than one, the cross section
(9.75) is much greater than the geometrical cross section πa2. This case is known
as resonant scattering. It is interesting to compare the condition for such an
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s-wave resonance with the equation governing the energy levels of a particle in a
spherical potential well (cf. problem 3.5) which is

−k ′′ cot k ′′a = (−2m Eb/}
2)1/2 (9.76)

where
k ′′ = [2m(−U0 − E)/}2]1/2

and Eb is the binding energy of the system. In the case where Eb is small,
k ′′ is nearly equal to k ′ and (9.76) is approximately equivalent to the resonance
condition. We can conclude, therefore, that s-wave resonant scattering with large
cross section is to be expected if there is a bound state of the system particle-plus-
scatterer whose energy level lies just below the top of the well; the cross section
(9.75) can then be expressed as

σ � 2π}2

m(E − Eb)
(9.77)

We note that as the energy E of the incident particles is decreased, the cross
section approaches a limiting value determined by the binding energy. Clearly
these conditions will also hold and resonance scattering will also occur if U0 is
just a little smaller than would be required for there to be a zero-energy bound
state. In this case the quantity Eb measured from such scattering experiments
is interpreted as the energy associated with a ‘virtual’ energy level. As with
the Ramsauer–Townsend effect, we expect these results to be quite general and
independent of the detailed shape of the well. The large phase shift can be
explained semi-classically if we imagine the incident particle to be ‘trapped’ in
the well for a time before it is re-emitted, and the closer the energy of the particle
is to that of the bound state, the greater will be the probability of trapping. An
example of resonant scattering is that of low-energy neutrons from hydrogen
where the s-wave cross section of 20.4 × 10−28 m2 is more than one hundred
times greater than would be expected classically, given the range of the neutron–
proton interaction (2 × 10−15 m); and indeed the deuteron (which consists of a
proton and neutron bound together) does have an energy level with a very small
binding energy.

Problems

9.1 Particles of energy E move in one dimension towards a potential barrier of height Un and width
a. Show that if E is greater than U0 the probability of scattering P is given by

P =
[

1+ 4E(E −U0)

U2
0 sin2 k2a

]−1

where k2 = [2m(E − U0)/}
2]1/2, and obtain a corresponding expression for the transmission

probability.

9.2 Show that the scattering probability derived in problem 9.1 is zero if k2a = nπ where n is an
integer and has a maximum value if the incident energy is such that k2a cot k2a = 2−U0/E .
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Compare this situation and that set out in problem 9.1 with those applying in the Ramsauer–
Townsend effect and in s-wave resonant scattering.

9.3 Obtain expressions for the scattering and transmission probabilities for the system described in
problem 9.1, but now assume E to be less than U0. Use your answers to all three questions to draw
graphs of the scattering probability as a function of E for values of E between 0 and 5U0 in the cases
where U0a2 = ±10}2/m.

9.4 Show that in one dimension the scattering probability calculated using the Born approximation is
P ′ where

P ′ = m2

}4k2

∣∣∣∣
∫ ∞
−∞

U(x)e−2ikx dx

∣∣∣∣2
Use this expression to calculate the scattering probability for the system described in problem 9.1 and
show that it is equivalent to the expression given there in the limit E � U0.

9.5 Particles of momentum }k0 travel along the z axis towards a three-dimensional rectangular
potential well of depth U0 and dimensions 2a × 2b × 2c where a, b and c are parallel to the x , y
and z axes respectively. Use the Born approximation to show that, if the incident energy is much
greater than U0, the differential scattering cross section in the direction (kx , ky , kz) is equal to

16m2U2
0 sin2(kx a) sin2(kyb) sin2[(kz − k0)c]

π2}4k2
x k2

y(kz − k0)
2

9.6 Use the Born approximation to estimate the differential scattering cross section when the scattering
potential is spherically symmetric and has the form Ar−2 where A is a constant.

Hint:
∫∞

0 x−1 sin x dx = π/2.

9.7 Show that the expression for s-wave scattering by a spherical potential well—see equations (9.72)
and (9.74)—goes over to that obtained from the Born approximation (cf. (9.39)) in the limit where
E � U0 and ka ! 1.

Hint: do not use (9.73), but obtain a limit of (9.72) when k and k′ are both small.

9.8 Show that the phase shift of the l = 0 partial wave in the case of scattering from a potential step,
whose height U0 is greater than the energy E of the incident particles, is given by equation (9.72)
with tan k′a replaced by tanh k′a wherever it appears. Show that in the limit U0 → ∞ this result is
consistent with that obtained earlier in the case of scattering by hard spheres.

9.9 Show that the s-wave cross section for very low-energy neutrons scattered by protons is about
2.4× 10−28 m2, on the assumption that the binding energy of the deuteron is −2.23 MeV (remember
to use reduced mass). This is considerably smaller than the observed cross section of 20.4×10−28 m2

because of the spin dependence of the neutron–proton interaction. In the ground state of the deuteron
the z components of the two spins are parallel, but this is true for only three-quarters of all scattering
events. Show that the experimental cross section can be reproduced if the state with zero total spin has
a virtual level with energy about 70 keV.



Chapter 10

Many-particle systems

Although many of the principles of quantum mechanics can be adequately
illustrated by considering systems that consist of only one particle subject to
external forces, there are a number of important phenomena that are manifest
only in systems containing two or more particles, and these will be the subject
of the present chapter. We shall begin with some general statements and go on
to consider the case of two interacting particles subject to no external forces,
when we shall find that the problem can be separated into one describing the
behaviour of the centre of mass of the system and another describing the relative
motion. We shall then consider the case of two non-interacting particles and show
that the particles can often be treated independently as would be expected. In
the case of indistinguishable particles, however, we shall find that a symmetry is
imposed on the wavefunction, which ensures that the behaviour of such particles
is coupled even when they do not interact. We shall introduce the problem of
interacting systems containing more than two identical particles, explaining what
is meant by ‘fermions’ and ‘bosons’ and how their properties compare. These
results will be illustrated by discussing the energy levels and optical spectra of the
helium atom, starting with the approximation that the two electrons do not interact
and extending the discussion to the realistic case using perturbation theory. The
chapter closes with a consideration of the effects of particle indistinguishability
on scattering theory.

10.1 General considerations

A system containing N particles is described by a wavefunction that is, in general,
a function of the positions and spins of all the particles and of time. Ignoring
spin for the present, we write this wavefunction as �(r1, r2, . . . , rN , t) and we
can straightforwardly extend the probabilistic interpretation set up in the earlier
chapters for a single particle, so that

|�(r1, r2, . . . , rN , t)|2 dτ1 dτ2 . . . dτN

205
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is the probability that particle 1 will be found in the element of volume dτ1 in
the vicinity of r1, simultaneously with particle 2 being found within dτ2 in the
vicinity of r2, etc. Probability distributions for other dynamical quantities can
be derived from � by the general procedure described in chapter 4, given the
form of the appropriate operators and assuming that the corresponding eigenvalue
equations can be solved. In general, integrals occurring in the basic theoretical
expressions are with respect to all the coordinates of all the particles in the system.
For example, the normalization condition becomes∫

. . .

∫
|�(r1, r2, . . . , rN , t)|2 dτ1 dτ2 . . . dτN = 1 (10.1)

The operators representing measurable quantities may be specific to particular
particles or may represent global properties of the system. Thus the operator
representing the x component of the momentum of the i th particle is P̂xi =
−i}∂/∂xi , while that representing the x component of the total momentum of
a system of N particles is

P̂x =
∑

i=1,N

P̂xi = −i}
∑

i=1,N

∂/∂xi (10.2)

As usual, we shall be particularly interested in the energy eigenvalues and
eigenfunctions, and the Hamiltonian operator representing the total energy of a
system of N particles has the following general form (omitting possible spin-
dependent terms)

Ĥ = −
∑

i=1,N

}
2

2mi
∇2

i + V (r1, r2, . . . , rN ) (10.3)

where mi is the mass of the i th particle, ∇i is the vector operator differentiating
with respect to the coordinates of the i th particle, and V is the potential energy
of the system which, in general, will include contributions from external forces
along with the energy associated with the interactions between the particles. The
eigenvalue equation corresponding to the Hamiltonian (10.3) is therefore a partial
differential equation containing 3N variables. We saw in the early chapters how
difficult the solution of a system containing only the variables associated with a
single particle could be, so it is not surprising that exact solutions to the many-
body problem are possible only in simple cases. In much of the ensuing discussion
we shall refer to systems containing only two particles, because these turn out
to illustrate many of the important features of many-body systems, but we shall
also refer to the properties of ‘many-body’ systems containing a large number of
particles.

10.2 Isolated systems

In this section we consider a system of two particles that are not subject to any
external forces so that the potential energy depends only on the relative position
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of the particles and can be written as V (r1 − r2). The Hamiltonian is then

Ĥ = − }
2

2m1
∇2

1 −
}

2

2m2
∇2

2 + V (r1 − r2) (10.4)

We now change variables from the particle positions r1 and r2 to those of the
centre of mass of the system, R and their relative position, r. That is

R = m1r1 + m2r2

m1 + m2

r = r1 − r2


 (10.5)

The vector differential operators ∇1 and ∇2 can be expressed in terms of the
quantities ∇R and ∇r which correspond to the variables R and r respectively by

∇1 = m1

m1 + m2
∇R +∇r

∇2 = m2

m1 + m2
∇R −∇r


 (10.6)

Substituting from (10.5) and (10.6) into (10.4) we get

Ĥ = − }
2

2M
∇2

R −
}

2

2µ
∇2

r + V (r) (10.7)

where M is the total mass (m1 + m2) and µ is the ‘reduced mass’, m1m2/(m1 +
m2). The energy eigenvalue equation can now be separated and the eigenfunction
written as U(R)u(r) where

− }
2

2M
∇2

RU = ERU (10.8)

and [
− }

2

2µ
∇2

r + V

]
u = Er u (10.9)

the total energy being equal to ER + Er . Thus the problem has been separated
into an equation that relates only to the centre of mass of the system along with
another that describes the behaviour of a particle of mass µ under the influence of
a potential V (r). This justifies the procedure used when we obtained the energy
levels of the hydrogen atom in chapter 3 (see footnote to p. 53) and when we
considered the scattering of neutrons by protons in chapter 9 (problem 9.9).

The separation described here is also possible if the system is not isolated,
so long as the external forces can be considered as acting on the centre of mass
of the system, because the total potential then has the form VR(R) + Vr (r) and
equation (10.3) can be separated into two equations, one in R and the other
in r. The motion of the centre of mass can also be separated out in the case
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of a similar system containing more than two particles, although the equations
describing the internal motion do not then have such a simple form. This explains
why the behaviour of the centre of mass of a composite system can be treated
without having to consider the detailed behaviour of its component particles. For
example, the behaviour of an atom in a gas can be described without taking its
internal structure into account, provided the thermal energy is not sufficient to
cause electronic excitations. Similarly, the internal structure of the nucleus can be
ignored when discussing most of the properties of an atom, while a ‘fundamental’
particle such as a proton can be considered as a point particle unless very high
energy interactions, disturbing its internal structure, are involved.

10.3 Non-interacting particles

We now turn to a case which is more or less the opposite of that just discussed,
and consider two particles which may be subject to external forces but which do
not interact with each other. The potential can then be written as V1(r1)+ V2(r2)

and the Hamiltonian becomes

− }
2

2m1
∇2

1 −
}

2

2m2
∇2

2 + V1(r1)+ V2(r2) (10.10)

If we now write an energy eigenfunction in the form u1(r1)u2(r2) we can separate
the variables r1 and r2 and get the following eigenvalue equations

− }
2

2m1
∇2

1 u1 + V1u1 = E1u1 (10.11)

− }
2

2m2
∇2

2 u2 + V2u2 = E2u2 (10.12)

where E1 and E2 are the energies associated with the separate particles and the
total energy is

E = E1 + E2 (10.13)

Thus we can apparently treat the particles as completely independent of each
other, as would be expected since they do not interact. However, this apparently
obvious conclusion is not valid in the particular case where the particles are
identical, and we shall discuss this situation in more detail in the next section.

10.4 Indistinguishable particles

Identical particles are often referred to as indistinguishable in order to emphasize
the fact that they cannot be distinguished by any physical measurement. This
implies that an operator representing any physical measurement on the system
must remain unchanged if the labels assigned to the individual particles are
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interchanged. Thus, if we write the Hamiltonian of two indistinguishable particles
as Ĥ(1, 2), we must have

Ĥ(1, 2) = Ĥ (2, 1) (10.14)

We now define a ‘particle interchange operator’ P̂12 such that, if this operates on
any function or operator that depends on the variables describing two particles, it
has the effect of interchanging the labels. Thus we have

P̂12 Ĥ(1, 2) = Ĥ(2, 1) = Ĥ(1, 2) (10.15)

using (10.14). Now let ψ(1, 2) be a wavefunction (not necessarily an energy
eigenfunction) describing the two particles. The wavefunction is not a physical
quantity so need not be invariant when operated on by P̂12. However we can write

P̂12 Ĥ(1, 2)ψ(1, 2) = Ĥ (2, 1)ψ(2, 1)

= Ĥ (1, 2)P̂12ψ(1, 2) (10.16)

Hence
[P̂12, Ĥ (1, 2)] = 0 (10.17)

because (10.16) is true whatever the form of ψ . Thus the particle interchange
operator and the Hamiltonian commute which means that they are compatible
and have a common set of eigenfunctions. Now, because the particles are
indistinguishable, not only the Hamiltonian, but any operator representing a
physical property of the system must be symmetric with respect to particle
interchange and must therefore commute with P̂12. Thus whatever measurement
is made on the system, the resulting wavefunction will be an eigenfunction of P̂12,
and no loss of generality is involved if we assume that the wavefunction always
has this property.

If ψ(1, 2) is to be an eigenfunction of P̂12, it must be a solution of the
eigenvalue equation

P̂12ψ(1, 2) = pψ(1, 2) (10.18)

where p is the corresponding eigenvalue. But the left-hand side of (10.18) is by
definition equal to ψ(2, 1). If we operate on ψ(2, 1) with P̂12, we get

ψ(1, 2) = P̂12ψ(2, 1) = pP̂12ψ(1, 2)

= p2ψ(1, 2)

Hence,
p = ±1 (10.19)

and
ψ(1, 2) = ±ψ(2, 1) (10.20)

We therefore conclude that any physically acceptable wavefunction representing
two identical particles must be either symmetric or antisymmetric with respect
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to interchange of the particles. This property is readily extended to a system
containing more than two particles when the many-body wavefunction must be
either symmetric or antisymmetric with respect to the interchange of any pair
of particles. Moreover, we have seen that the operators representing physical
measurements all commute with P̂12 so that, once a system is in one of these
eigenstates, it can never make a transition to the other.

It follows from this that every particle belongs to one of two classes
depending on whether the wavefunction representing a number of them is
symmetric or antisymmetric with respect to particle exchange. Particles with
symmetric wavefunctions are known as bosons while those whose wavefunctions
are antisymmetric are called fermions. This symmetry with respect to particle
interchange turns out to be closely connected with the value of the total spin of
the particle: bosons always have an integer total-spin quantum number (e.g., the
α particle and pion have spin-zero and the deuteron is a spin-one particle) while
fermions always have half-integer spin (e.g., the electron, proton, neutron, and
neutrino are all spin-half). This simple one-to-one correspondence between the
total-spin quantum number and the interchange symmetry is known as the spin-
statistics theorem, and can be shown to be a necessary consequence of relativistic
quantum field theory, and this is briefly discussed in chapter 11.

Non-interacting indistinguishable particles

The results obtained so far in this section apply to any system of indistinguishable
particles, whether or not they interact. We can now combine these with the
particular properties of non-interacting systems discussed earlier to find the form
of the energy eigenfunction of two indistinguishable non-interacting particles.
Referring to equations (10.10) we see that, if the particles are indistinguishable,
m1 must equal m2 and V1(r) must be the same as V2(r). Thus equations (10.11)
and (10.12) are now identical and have the same set of eigenvalues and
eigenfunctions. The total energies of the states with eigenfunctions u1(1)u2(2)
and u1(2)u2(1) are therefore the same, and any linear combination of these is
also an eigenfunction with the same eigenvalue. We must therefore form linear
combinations of these products which have the appropriate symmetry with respect
to particle exchange.

Considering bosons first, the wavefunction must be symmetric with respect
to particle exchange so we must have

ψ(1, 2) = 2−1/2[u1(1)u2(2)+ u1(2)u2(1)] (10.21)

where the factor 2−1/2 ensures that the wavefunction is normalized. In the
special case where both particles are associated with the same single-particle
state, that is where u1 is the same as u2, (10.21) becomes (with a slight change of
normalization factor)

ψ(1, 2) = u1(1)u1(2) (10.22)
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Turning now to fermions, we must form an antisymmetric linear combination
of the degenerate functions to get

ψ(1, 2) = 2−1/2[u1(1)u2(2)− u1(2)u2(1)] (10.23)

and this time the wavefunction in the special case where u1 is the same as u2
becomes

ψ(1, 2) = 2−1/2[u1(1)u1(2)− u1(1)u1(2)]
= 0

so that the wavefunction now vanishes identically implying that such a state of
the system does not exist. This result is known as the Pauli exclusion principle
and is sometimes expressed by stating that no two fermions can occupy the
same state. This can be a useful form of the exclusion principle, but we should
realize that if the wavefunction has the form (10.23), a particular particle cannot
actually be identified with a particular single-particle function u1 or u2. The
exclusion principle actually states that each single-particle eigenfunction can
be used only once in constructing products, linear combinations of which form
the total wavefunctions. We can get away with the simpler form provided we
are interested only in the total energy of a system of non-interacting particles.
Because of degeneracy, we will get the correct value for the energy if we use
simple product wavefunctions of the form u1(1)u2(2), and apply the exclusion
principle to exclude any products in which both particles are assigned to the same
state. We used this procedure in our discussion of the properties of free electrons
in solids in chapter 7, where we found that the differences between insulators and
metals arise from the fact that all states up to an energy gap are full in the former
case, but not the latter. Similar principles can be applied to electrons in atoms to
give a qualitative account of many of the chemical properties of the elements and
the periodic table. For example, in the ground state of the lithium atom, two of
the three electrons occupy the lowest (1s) energy level with opposite spin and the
third is in the higher-energy 2s state, while in the sodium atom, ten electrons fill
all the levels with n = 1 and n = 2, leaving one in the 3s level. When all the
states with the same n value are full, the electrons in them have comparatively
little effect on the physical and chemical properties of the element; it follows that
these are largely determined by the one outer electron only and are therefore very
similar in the two cases.

If, however, we are interested in properties other than the total energy
of a system of non-interacting particles or if we wish to take inter-particle
interactions into account, we have to use a wavefunction which is antisymmetric
with respect to particle interchange and we must abandon any idea of a particle
being associated with a particular state. We shall consider an example of such
a system containing two interacting particles when we discuss the helium atom
later in this chapter, and we shall return to the conceptual problems associated
with the non-separability of identical particles in chapter 13.
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10.5 Many-particle systems

The principles discussed in the earlier sections can be readily extended to systems
containing more than two particles, but their application to particular cases is
often a complex and elaborate process. In this section we shall outline some of
the basic ideas to provide an introduction to this topic.

The operators representing the physical properties of a system composed of
a number of indistinguishable particles are clearly symmetric with respect to all
interchanges of the particle labels, so it follows from the same argument used
in the two-particle case that the many-body wavefunction must always be either
symmetric or antisymmetric with respect to the exchange of any pair of labels.
Thus, for example, the wavefunction representing a system of three bosons must
obey the conditions

ψ(1, 2, 3) = ψ(2, 1, 3) = ψ(3, 2, 1) = ψ(1, 3, 2)

= ψ(2, 3, 1) = ψ(3, 1, 2) (10.24)

while that representing three fermions must satisfy the following

ψ(1, 2, 3) = −ψ(2, 1, 3) = −ψ(3, 2, 1) = −ψ(1, 3, 2)

= ψ(2, 3, 1) = ψ(3, 1, 2) (10.25)

We note that in the latter case the wavefunction is symmetric with respect to a
cyclic permutation of the three indices.

The energy eigenvalue equation for non-interacting particles can be
separated into as many single-particle equations as there are particles and,
assuming these can be solved, the single-particle eigenfunctions u1, u2, . . . , uN

can be formed into products, from which symmetric or antisymmetric linear
combinations can be constructed. These can be used as a starting basis in the
general case, with the interactions included using perturbation theory.

Bosons

The ground-state eigenfunction of a system of N non-interacting bosons is

u0(1)u0(2) . . .u0(N) (10.26)

where u0 is the single-particle eigenfunction corresponding to the lowest energy
eigenvalue, and all the particles are in this state. A gas of non-interacting bosons
at zero temperature is described by this wavefunction. At temperatures above
absolute zero, the energy eigenfunction is a symmetric linear combination of
products of one-electron functions, whose total energy is equal to the internal
energy of the gas. This problem can be analysed using statistical methods;
the particular form of statistical mechanics in which the exchange symmetry of
the wavefunction is preserved is known as Bose–Einstein statistics. In general
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terms, as the temperature is increased slightly above T = 0, some particles
are excited into higher states, but most remain in the ground state. However,
further rises in temperature give rise to rapid depletion of the ground state,
which is completely emptied when a particular temperature known as the Bose
condensation temperature (T0) is reached. A more detailed analysis leads to

kBT0 = 2π}2

m

[
n

2.612(2 j + 1)

]2/3

(10.27)

in the case of n particles of mass m and total spin quantum number j occupying
unit volume. The set of atoms occupying the ground state below T0 constitute
what is known as a Bose condensate. The properties of this state where a large
number of atoms behave as a coherent whole have been subject to considerable
investigation. Until the late twentieth century, this was largely focused on the
properties of liquid helium; this substance undergoes a transition at about 2.17 K
into a ‘superfluid state’ which exhibits a number of unusual properties, including
a complete loss of viscosity. If the atomic mass and liquid density of helium are
inserted in (10.27), we get T0 = 3 K . This indicates that Bose condensation
plays an important role in determining the properties of the superfluid state.
However, in liquid helium the interatomic energy is of the same order as kBT0,
and condensation and interactions are believed to be of similar importance in this
case.

Bose condensation in the absence of interactions was not demonstrated
until 1995, when an experiment was carried out on rubidium atoms held in an
‘atom trap’ constructed from magnets and laser beams. Lasers were also used
to bombard the atoms with radiation from all directions. The wavelength of the
radiation is chosen so that the photons interact only with atoms that were moving
towards them, so slowing them down and producing a temperature of about
10−5 K. Rubidium atoms possess spin and therefore have magnetic moments
that can be aligned in a field and trapped by appropriately constructed magnetic
field gradients, and further cooling is achieved by allowing the more energetic
atoms to evaporate from the trap. In this way a few thousand atoms were confined
to a volume a few microns in diameter with an interatomic spacing of around
2× 10−7 m with temperatures as low as T = 30 nK. At this density, T0 is about
170 nK in the case of rubidium. As this separation is about 400 times larger than
the distance between atoms in solid rubidium, the interactions between the atoms
are negligibly small.

The evidence for the creation of a Bose condensate in this way is illustrated
in figure 10.1. After compressing and cooling the atoms, the confining field is
removed and the spatial distribution of the atoms is recorded a short time later.
If the atoms are in thermal motion, they move randomly during this time and
are seen to be well spread out on the scale of the diagram—as is the case at
T = 200 nK. However, if they have condensed into their ground state, the
spread is due only to the quantum uncertainty in the momentum, which is much
smaller. As a result, the distributions at T = 100 nK and T = 30 nK contain
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Figure 10.1. The distribution of atomic velocities in a collection of rubidium atoms held
in a trap for three temperatures that span the Bose condensation temperature of 170 nK.
Zero velocity corresponds to the centre of the peak in each case. The condensate is absent
at 200 nK, well established at 100 nK and very nearly complete at 20 nK. (As illustrated
for the JILA Bose–Einstein condensate group in 1995 by M. R. Matthews, and reproduced
by permission.)

the narrow peaks shown. The fact that this is a thermodynamic phase transition
is confirmed by the very rapid growth in the condensate as the temperature
is lowered through the transition temperature. In recent years, the detailed
properties of Bose condensates have been subject to considerable experimental
and theoretical investigation.

Fermions

In the case of non-interacting fermions, antisymmetric linear combinations have
to be formed from the products of single-particle eigenfunctions. The general
form of these in the case of a system of N particles, where the single-particle
eigenfunctions are u1, u2, . . . , uN , is

ψ = 1

(N !)1/2

∣∣∣∣∣∣∣∣∣

u1(1) u2(1) · · · uN (1)
u1(2) u2(2) · · · uN (2)

...
...

...

u1(N) u2(N) · · · uN (N)

∣∣∣∣∣∣∣∣∣
(10.28)

Such an expression is known as a Slater determinant. We can see that this fulfils
the required condition of antisymmetry using standard properties of determinants:
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an exchange of the labels on two particles is equivalent to exchanging two rows of
the determinant which leaves its magnitude unchanged, but reverses its sign. We
also note that the expansion of an N × N determinant contains N ! terms which
leads to the normalization factor of (N !)−1/2, assuming the one-electron orbitals
are orthonormal. The Pauli exclusion principle also follows from (10.28): if two
or more particles are associated with the same single-particle eigenfunction, two
or more columns of the determinant are identical and the whole wavefunction
vanishes.

The form of statistical mechanics applying to a gas of non-interacting
fermions is known as Fermi–Dirac statistics. At zero temperature the
wavefunction has the form (10.28) where the single-particle eigenfunctions are
those with smallest eigenvalues, while at higher temperatures states with higher
energy are involved. We saw an example of a system obeying Fermi–Dirac
statistics when we discussed the behaviour of electrons in metals in chapter 7;
another example is a gas of atoms of the isotope 3He whose nucleus has a total
spin quantum number of one-half. As the electrons have zero total orbital angular
momentum and zero spin in the ground state, the total wavefunction must be
asymmetric with respect to exchange of pairs of hydrogen atoms and such a gas
must obey Fermi–Dirac statistics. As a result the low-temperature properties of
3He are quite different from those of normal helium whose nucleus, 4He, has
zero spin. For example, 4He exhibits superfluidity below a temperature of about
2 K, but 3He remains a normal liquid down to temperatures less than 0.01 K. At
high temperatures, however, the properties of the two gases are very similar; and
this can also be shown to be in agreement with the results of quantum statistical
mechanics.

The case of interacting fermions has considerable practical importance
because it represents the situation applying in many-electron atoms and molecules
as well as in nuclei and in the case of electrons in solids. Exact solutions are
rarely possible, but various approximations have been developed. One of the
most important of these is known as the self-consistent field or Hartree-Fock
method. In this approximation, the single-particle eigenfunctions are calculated
assuming that each particle is subject to a potential equivalent to the average of
its interaction with all the others. This interaction potential is taken to be that
from a continuous charge distribution whose magnitude is proportional to the sum
of the squared moduli of some approximate set of one-electron eigenfunctions,
along with an exchange term analogous to that discussed later in the case of
the helium atom (10.36). The resulting eigenvalue equations are then solved
to give new one-electron eigenfunctions which, in turn, are used to construct
new potentials. This iterative process is continued until no further significant
changes occur, when the system is said to be ‘self-consistent’. It can be shown
that this procedure is equivalent to using the variational principle to obtain the
best possible representation of the many-particle eigenfunction in the form of a
single determinant such as (10.28). More accurate results can be obtained if the
eigenfunction is represented by a linear combination of determinants, each of
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which is constructed from a different set of one-electron functions. Nowadays,
such calculations are quite straightforward for all but the heaviest atoms and
for moderately sized molecules. Computations of this kind now form part of
the routine armoury of the theoretical chemist and are particularly powerful
for the study of short-lived chemical species, which often cannot be studied
experimentally.

10.6 The helium atom

The helium atom consists of two electrons and a double charged positive nucleus.
Throughout our discussion we shall make the approximation that the mass of the
nucleus is infinitely greater than that of an electron so that the problem can be
treated as that of two electrons moving in a potential. For the moment we shall
also ignore spin–orbit coupling so that the Hamiltonian of the system is

Ĥ = − }
2

2m
∇2

1 −
}

2

2m
∇2

2 −
2e2

4πε0r1
− 2e2

4πε0r2
+ e2

4πε0r12
(10.29)

where r12 ≡ |r1 − r2| is the separation of the two electrons. We note that, as
expected, Ĥ is symmetric with respect to the interchange of the labels on the
identical electrons. In the discussion that follows we first ignore the last term in
(10.29), which represents the inter-electronic interaction, so that we can consider
the problem as a non-interacting one. The effects of the interaction term are
then treated by perturbation theory and, finally, spin–orbit interactions will be
considered.

We saw earlier that in the non-interacting limit, the energy eigenfunctions
can be expressed as products of single-particle eigenfunctions, which in general
depend on both the particle position and its spin. In the case of helium it
follows that, if the interaction is ignored, the spatial parts of the single-particle
eigenfunctions are solutions to the equation

(
− }

2

2m
∇2

1 −
2e2

4πε0r1

)
u = Eu (10.30)

and are therefore the same as the hydrogenic eigenfunctions described in chapter 3
and referred to several times since. It will also be important to include the spin
part of the wavefunction and we represent this by α or β depending on whether
the z component of spin is positive or negative respectively. If we now consider
states where the spatial parts of the single-particle eigenfunctions are u1 and u2,
and if we include all possible values of the spin, we obtain the following eight
products, all of which are energy eigenfunctions with the same eigenvalue in the
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non-interacting limit:

u1(r1)α(1)u2(r2)α(2) u2(r1)α(1)u1(r2)α(2)

u1(r1)α(1)u2(r2)β(2) u2(r1)β(1)u1(r2)α(2)

u1(r1)β(1)u2(r2)α(2) u2(r1)α(1)u1(r2)β(2)

u1(r1)β(1)u2(r2)β(2) u2(r1)β(1)u1(r2)β(2)




(10.31)

We construct antisymmetric functions by taking appropriate linear
combinations of the products listed in (10.31). This can be done in a number
of ways, but it will turn out to be an advantage if they are each expressed as a
product of a spatially dependent and a spin-dependent part; in this case, if the
total wavefunction is to be antisymmetric, either the spin-dependent part must be
antisymmetric and the spatial part symmetric or vice versa. The four functions
which can be constructed consistently with these requirements are then:

1√
2
[u1(r1)u2(r2)− u1(r2)u2(r1)]α(1)α(2)

1√
2
[u1(r1)u2(r2)− u1(r2)u2(r1)]β(1)β(2)

1√
2
[u1(r1)u2(r2)− u1(r2)u2(r1)] 1√

2
[α(1)β(2)+ α(2)β(1)]

1√
2
[u1(r1)u2(r2)+ u1(r2)u2(r1)] 1√

2
[α(1)β(2)− α(2)β(1)]




(10.32)

It should be noted that the spin parts of the functions are eigenfunctions of
the operators representing the total spin of the two particles and of their total
z component (cf. the discussion of the coupling of angular momentum in
sections 6.5 and 6.6): the first three functions listed have their total-spin quantum
number S equal to 1 and the quantum number associated with the z component ms

has the values 1, −1 and 0 respectively; the fourth function has zero spin, so that
S = ms = 0. Thus in the first three states the electron spins are aligned as nearly
parallel as is allowed by the quantization rules for angular momentum, while in
the fourth they are antiparallel. We also note that in the special case where the
spatial parts of the single-particle functions are identical, that is, where u1 ≡ u2,
the only state allowed by the exclusion principle is the one with S = 0 and the
others are identically zero as expected.

We shall now consider how the energies of these states are affected by
the inclusion of the inter-electronic electrostatic interaction and by spin–orbit
coupling.

Inter-electronic interactions

We consider first the effects of the electrostatic interactions between the electrons.
We can ignore the spin parts of (10.32) for the moment, and apply perturbation
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theory to two degenerate states whose unperturbed eigenfunctions are

and

v01 = 1√
2
[u1(r1)u2(r2)− u1(r2)u2(r1)]

v02 = 1√
2
[u1(r1)u2(r2)+ u1(r2)u2(r1)]


 (10.33)

where the perturbation is

H ′ = e2

4πε0r12
(10.34)

Following the standard procedure described in chapter 7 we form the
matrix elements of Ĥ ′. Using (10.33) the off-diagonal element H ′

12 =∫
v∗01 H ′v02dτ1dτ2 can be expressed as four integrals involving u1 and u2. These

integrals form two pairs that have identical magnitude and opposite sign, so
H ′

12 = 0. There is therefore no mixing of the two states and v01 and v02 are
the appropriate zero-order eigenfunctions to be used when calculating the effects
of the perturbation. The first-order changes (E11 and E12) to the energies of the
two states are then equal to the diagonal elements of the perturbation matrix and
we have

E11 = H ′
11 = C − X

E12 = H ′
22 = C + X

}
(10.35)

where

and
C =

∫ ∫
u∗1(r1)u

∗
2(r2)

e2

4πε0r12
u1(r1)u2(r2) dτ1 dτ2

X =
∫ ∫

u∗1(r1)u
∗
2(r2)

e2

4πε0r12
u1(r2)u2(r1) dτ1 dτ2




(10.36)

The integral C is sometimes referred to as the ‘Coulomb energy’ because it is
equivalent to that of the classical electrostatic interaction between two continuous
charge distributions whose densities are |u1|2 and |u2|2 respectively, while X is
often referred to as the ‘exchange energy’ because the integrand contains terms
where the numbers labelling the electrons have been ‘exchanged’. Very little
physical significance should be attached to these designations, however, as the
integrals arise simply as a result of applying perturbation theory to the system,
and the only physically significant quantity being calculated is the total energy
whose value is equal to either the sum or difference of the two terms.

The quantities C and X can be evaluated given the form of the one-
electron eigenfunctions u1 and u2. The procedure is reasonably straightforward
in principle, but rather complex and tedious in detail. Accordingly we shall not
describe such calculations here, but concentrate on the qualitative significance
of the expressions for the energy eigenvalues, although we shall briefly discuss
the application of equations (10.36) to the calculation of the ground-state energy
towards the end of this section.
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We first note that, whereas there are four degenerate eigenfunctions (10.32)
in the absence of a perturbation, the inclusion of the electrostatic interaction has
split this system into a ‘triplet’ of three degenerate states all of which have a total-
spin quantum number equal to one, along with a spin-zero ‘singlet’ state. Thus
the energies of the states where the spins are parallel are different from those
where the spins are antiparallel and the system behaves as though the spins were
strongly coupled. It is important to remember that this coupling results from the
requirement that the wavefunction be antisymmetric and is quite independent of
the interaction between the magnetic dipoles associated with the spins which is
very much weaker. It turns out that the exchange integral X is generally positive
so that the triplet states have lower energy than the corresponding singlets.
Nevertheless, the ground state of helium is a singlet, because in this case both
electrons occupy the same (1s) orbital and no corresponding triplet state exists.
Another type of physical system that exhibits a similar coupling of spins is a
ferromagnet such as iron: in this case, however, the exchange interaction between
electrons associated with neighbouring atoms happens to lead to a negative X and
hence a triplet ground state. The magnetic moments associated with the atomic
spins therefore all point in the same direction, leading to a large magnetic moment
overall.

Returning to the helium atom, the coupling of the spins via the exchange
energy means that the spin–orbit interaction is between the total spin and the
total orbital angular momentum, whose magnitude is determined by the quantum
numbers of the single-particle functions u1 and u2. Given these quantum
numbers, the splitting due to spin–orbit coupling can be calculated by the methods
discussed in chapter 6, as can the response of the system to weak and strong
magnetic fields. Helium is therefore an example of Russell–Saunders coupling
which was discussed briefly at the end of chapter 6 where we mentioned that it
applied most usefully to atoms of low atomic number. In the case of heavy atoms,
the magnetic interaction between the spin and orbital angular momenta of the
individual electrons turns out to be stronger than the exchange interaction and we
get j– j coupling.

The fact that the spatial part of a singlet wavefunction is symmetric, while
that of a triplet is antisymmetric, means that electric dipole transitions between
any members of these two sets of states are forbidden. This is because the electric
dipole operator (cf. chapter 8) is a function of the electron positions only and, like
all physical operators, is symmetric with respect to particle interchange so that
the matrix elements connecting the singlet and triplet states are of the form∫ ∫

ψ∗s (1, 2)Q̂s(1, 2)ψa(1, 2) dτ1 dτ2

= −
∫ ∫

ψ∗s (2, 1)Q̂s(2, 1)ψa(2, 1) dτ1 dτ2 (10.37)

where the subscripts s and a signify symmetry and antisymmetry respectively
and Q̂s is any symmetric operator. But the labels on the variables of integration
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have no significance, so the integrals on each side of (10.37) are identical, which
can be true only if they both vanish. The same is true for any perturbation that
is a function of either the electron positions or of the spins only. It follows that
singlet to triplet transitions, and vice versa, occur only as a result of collisions
between atoms, where the property conserved is the total antisymmetry of the
wavefunction representing all the electrons in both atoms, rather than that of each
atom separately. Because transitions between singlet and triplet states occur so
rarely, they were not observed at all in the early days of spectroscopy and, at one
time, helium was thought to be a mixture of two gases: ‘parahelium’ with the
singlet spectrum and ‘orthohelium’ with that of the triplet.

These properties also underlie the principles of operation of the helium–
neon laser. When an electric discharge is passed through helium gas, it causes
many of the atoms to be ionized. When they subsequently recombine, there is an
appreciable probability of some of the atoms being in one of the excited triplet
states. These then decay, emitting photons, until they reach the lowest energy
triplet state where they remain because a further transition to the singlet ground
state is forbidden. It turns out that the excitation energy of the lowest triplet state
of helium is close to that of one of the excited states of neon so that in a mixture of
the two gases there is an appreciable probability of neon atoms being excited by
collisions with appropriate helium atoms. If the partial pressures of the gases in
such a mixture are right, an inverted population can be generated in which more
neon atoms are in this excited state than are in another state which has lower
energy. Radiation whose frequency matches the energy difference between the
two neon states can therefore be amplified by stimulated emission and laser action
ensues. This can be maintained continuously by passing a suitable discharge
through the mixture, thereby replenishing the number of triplet helium atoms.

We shall complete our discussion of the helium atom by considering some of
the more quantitative features of the energy levels. Figure 10.2 shows an energy-
level diagram in which the experimentally measured energies of the states are
referred to an origin that corresponds to the energy required to just remove one
electron from the atom, leaving the other in the ground state of the remaining He+
ion. The energy levels of the hydrogen atom derived in chapter 3 are also included
for comparison. We see that, on this scale, the ground-state energy of helium is
very much lower than that of hydrogen and that this is also true, to a lesser extent,
of the first and second excited states. However, states with high values of the
principal quantum number n (i.e. greater than about five) have energies that are
very little different from the corresponding hydrogen-atom values, being nearly
independent of the orbital-angular-momentum quantum number l. This last point
is consistent with the fact that helium, like hydrogen, exhibits a first-order Stark
effect (cf. section 7.2).

We can account for all these features using the theory developed earlier. The
first point to note is that all states where both electrons are assigned to excited
orbitals turn out to have such a high energy that they cannot exist as bound states.
All the bound states of the helium atom therefore involve linear combinations
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Figure 10.2. The energies of the singlet and triplet states of the helium atom compared
with the energy levels of the hydrogen atom. The number beside each energy level is the
principal quantum number n. Each triplet state is actually three closely spaced levels split
by the spin–orbit interaction. Zero energy corresponds to a singly ionized He atom.

of products in which one of the one-electron functions is the lowest energy (1s)
orbital. Accordingly, the quantity previously referred to as the principal quantum
number n denotes the orbital other than the 1s that is involved in the description
of the state.

We first consider highly excited states and note that the one-electron orbitals



222 Many-particle systems

with high values of n have appreciable magnitude only at large distances from
the nucleus, while the 1s eigenfunction is significant only at small values of
r (cf. figure 3.4). If we now examine the expressions for the Coulomb and
exchange energies (10.36) we see that, for a highly excited state, the exchange
energy is very small because u1 and u2 occupy almost entirely different regions
of space. The singlet and triplet states can therefore be treated as degenerate,
which means that the energy can be estimated by assigning one electron to each
of the orbitals u1 and u2 in the same way as in the non-interacting case discussed
earlier. The total energy of such a state would then be equal to the sum of the
energies of the ground and appropriately excited states of the He+ ion, along with
the Coulomb energy which represents the mean electrostatic interaction between
electrons assigned to these two orbitals. This result still has the limitations of
first-order perturbation theory and a better approximation is obtained by assuming
that the particles can be independently assigned to each single-particle orbital but
that the form of each orbital is affected by the presence of the other electron.
Thus the outer electron moves in a potential due to the nucleus and the charge
distribution of the spherically symmetric inner orbital, which is equivalent to that
of a single positive charge (+e) at the nucleus. The outer electron therefore has
an energy close to that of the corresponding state in hydrogen, while the inner
electron has an energy equivalent to that of the 1s orbital of a He+ ion, because
the field inside the spherically symmetric charge distribution of the outer orbital
is zero. The total energy of such an excited state is therefore close to the sum of
the ground-state energy of a He+ ion and that of the appropriately excited state of
the hydrogen atom, which is just the result obtained experimentally and described
in the previous paragraph (cf. figure 10.1).

Turning our attention to the ground state of the helium atom, in this case
both electrons are associated with the 1s orbital, so the exchange term again
vanishes (this time because u1 ≡ u2) and the effect of the Coulomb term is that
each electron, to some extent, screens the other from the full potential of the
doubly charged nucleus. Evaluation of the Coulomb integral for the ground state
yields a value of 34.0 eV which, when combined with the unperturbed energy of
−54.4 eV, produces a value of−20.4 eV for the total, in good agreement with the
experimental result of −24.8 eV, given the limitations of first-order perturbation
theory in this context.

Finally, we consider states, other than the ground state, that are not highly
excited. We can now no longer assume that the exchange energy is negligible, and
the singlet and triplet states are therefore expected to have different energies, as
is observed experimentally. Moreover, the effective potential experienced by the
electrons is now significantly different from the Coulomb form, so states whose
orbitals have the same values of n, but different l, are no longer degenerate.
We see in figure 10.2 that both these effects are most pronounced for states
constructed from an orbital with n = 2 along with the 1s orbital, and become
progressively smaller as n increases until, for n greater than about five, the states
can be considered as ‘highly excited’ in the sense described earlier.
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10.7 Scattering of identical particles

We close this chapter by considering the problem of scattering where the particles
in the incident beam are identical to that constituting the scatterer; an example to
which we shall return shortly is the scattering of alpha particles by the nuclei of
4He atoms. We note that in a scattering problem there are no external forces,
so we can separate the relative motion from that of the centre of mass using
the procedure discussed previously for isolated systems. Neglecting spin for the
present, the energy eigenfunctions can be written as

ψ(r1, r2) = U(R)u(r) (10.38)

where—using (10.5) and remembering that m1 = m2—R = 1
2 (r1 + r2) and

r = r1 − r2. Clearly U(R) is completely symmetric with respect to particle
exchange, so the symmetry of the wavefunction is determined by that of u(r).
Moreover, particle interchange is equivalent to a reversal of the sign of r so
exchange symmetry is equivalent to the parity in this case.

In chapter 9 (cf. equations (9.57) to (9.60)) we showed that the energy
eigenfunction in a scattering problem could be written in the form

V−1/2
[

eikz + 1

kr
eikr f (θ)

]
(10.39)

where

f (θ) =
∞∑

l=0

(2l + 1)eiδl sin δl Pl(cos θ) (10.40)

Equation (10.39) does not have a definite parity so the correct eigenfunction in the
case of identical particles must be equal to a linear combination of this expression
with a similar one whose sign of r is reversed. That is,

u(r) = (2V )−1/2
{
[eikz ± e−ikz ] + 1

kr
eikr [ f (θ)± f (π − θ)]

}
(10.41)

where the positive and negative signs apply when u(r) is symmetric and
antisymmetric respectively. In the absence of scattering, the wavefunction is
proportional to the first term in square brackets in (10.41), so it follows by an
argument similar to that leading to equations (9.61) and (9.62), that the differential
cross section σ(θ) is given by

σ(θ) = | f (θ)± f (π − θ)|2 (10.42)

We know from chapter 3 that

Pl(cos θ) = (−1)l Pl(cos(π − θ))

so it follows from (10.41) and (10.42) that the cross section is made up from
partial waves with only even values of l in the symmetric case and with only odd
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values in the asymmetric case. It also follows from (10.42) that the contributions
to the total cross section from those partial waves that have non-zero amplitude
are four times what they would be if the particles were distinguishable. Half of
this factor of four arises because a recoiling target particle cannot be distinguished
from one scattered out of the incident beam, but the remaining factor of two has
no such simple cause. All these results have been confirmed experimentally by
scattering experiments involving spin-zero particles: the scattering of α particles
by 4He atoms, for example, departs from the predictions of the Rutherford
scattering formula (9.42) in a manner that can be quantitatively accounted for
on this basis.

When the particles have non-zero spin, the overall symmetry of the
wavefunction is determined by that of both the spatial and the spin-dependent
parts. We shall not consider the general case here, but confine our discussion to
spin-half fermions where the total wavefunction must be antisymmetric. It follows
that all partial waves contribute to the scattering, but for those with even l the
spin part must be antisymmetric and therefore correspond to a singlet state with
zero total spin, while for those with odd l the spin function must be symmetric,
corresponding to a spin-one triplet state. Thus if, for example, the energy of
the incident particle were such that the scattering is s-wave in character, we can
conclude that scattering will occur only when the particle spins correspond to
a singlet state. As, on average, only one-quarter of the particle pairs is in this
state, the total cross section is reduced by a factor of four to be the same as if
the particles were distinguishable. After such a scattering event, therefore, the
incident and target particles move off in a state where both the total orbital angular
momentum and the total spin are zero. An example of the application of this
principle is the scattering of protons by hydrogen nuclei at an energy large enough
to ensure that the scattering is predominantly due to the nuclear force rather than
the Coulomb interaction, but small enough to ensure that the contribution from
partial waves with non-zero values of l is negligible. As will be discussed in
chapter 13, measurements of the properties of such pairs of protons can be used
to compare the predictions of quantum mechanics with those of ‘hidden variable’
theories.

Problems

10.1 Show that for a many-particle system, subject to no external forces, the total energy and total
momentum can always be measured compatibly, but that, if the particles interact, the individual
momenta cannot be measured compatibly with the total energy.

10.2 Two particles of masses m1 and m2 move in one dimension and are not subject to any external
forces. The potential energy of interaction between the particles is given by

V = 0 (|x12| 6 a); V = ∞ (|x12| > a)

where x12 represents the particle separation. Obtain expressions for the energy eigenvalues and
eigenfunctions of this system if its total momentum is P .

10.3 Repeat the calculation in problem 10.2 for the case where the two particles have the same mass



Problems 225

m and are (i) indistinguishable spin-zero bosons and (ii) indistinguishable spin-half fermions.

10.4 Show that if �(r1, r2, . . . , rN ) is the wavefunction representing a system of N indistinguishable
particles, then the probability of finding any one of these in the element dτ around the point r is given
by P1(r) dτ where

P1(r) =
∫

. . .

∫
|�(r, r2, . . . , rN )|2 dτ2 . . . dτN

Show that in the case of two non-interacting particles (either bosons or fermions)

P1(r) = 1
2 (|u1(r)|2 + |u2(r)|2)

where u1 and u2 are appropriate single-particle eigenfunctions.

10.5 Two indistinguishable non-interacting spin-half particles move in an infinite-sided one-
dimensional potential well. Obtain expressions for the energy eigenvalues and eigenfunctions of the
ground and first excited states and use these to calculate P1(x)—as defined in problem 10.4—in each
case.

Show that in those of these states where the total spin is zero, there is generally a finite
probability of finding the two particles at the same point in space, but that this probability is zero
if the total spin is one.

10.6 Show that if the potential described in problem 10.5 has width Na and contains a large number N
of non-interacting fermions, the total ground-state energy is approximately equal to (π2

}
2/24ma2)N .

10.7 Using the one-dimensional model described in problem 10.6, estimate the average energy per
particle for (i) a free-electron gas and (ii) a gas of 3He atoms assuming a mean linear density of
4× 109 particles per metre in each case.

Compare your answer to (ii) with a similar estimate of the ground-state energy per atom of 4He
gas. Above about what temperature might you expect these gases to have similar properties?

10.8 A bound system consisting of two neutrons is almost, but not quite, stable. Estimate the energy
of the virtual energy level of this system given that the low-energy s-wave scattering cross section of
neutrons by neutrons is about 60× 10−28 m2.

Hint: cf. problem 9.9.



Chapter 11

Relativity and quantum mechanics

The early twentieth century saw two major revolutions in the way physicists
understand the world. One was quantum mechanics itself and the other was the
theory of relativity. Important results also emerged when these two ideas were
brought together; some have been referred to in earlier chapters—in particular the
fact that fundamental particles such as electrons have intrinsic angular momentum
(spin) was stated to be a relativistic effect.

A full understanding of relativistic quantum mechanics is well outside the
scope of this book, but many of the most important results can be understood at
this level and these will be discussed in this chapter. After a short summary of
the main results of special relativity, we show how combining this with the time-
dependent Schrödinger equation leads to a new wave equation known as the Dirac
equation. We show how the Dirac equation requires particles such as electrons
to have intrinsic angular momentum (spin) and we explore some of its other
consequences. The chapter concludes with an outline of some more advanced
ideas known as quantum field theory.

11.1 Basic results in special relativity

Special relativity modifies classical (i.e. non-quantum) kinematics and dynamics
to encompass phenomena that are exhibited strongly when particles move at
speeds comparable to the speed of light. We will assume that the reader is familiar
with the main results of special relativity, and this section will be restricted to a
summary of those needed for our later discussion.

The kinematics are governed by the Lorentz transformation which relates the
position and time coordinates (x, y, z, t) of an event observed in one inertial frame
of reference to those (x ′, y ′, z′, t ′) observed from another moving at constant
speed v in the x direction relative to the first. We have

x ′ = x − vt√
1− v2/c2

y ′ = y z′ = z t ′ = t − (v/c2)x√
1− v2/c2

(11.1)

226
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where c is the speed of light. The momentum p and energy E of a particle
also transform by a Lorentz transformation where x , y, z and ct in (11.1) are
replaced by px , py , pz and E/c respectively, the energy including the ‘rest-mass’
energy mc2. The energy and momentum are then related by the principal equation
governing the dynamics of a free particle:

E2 = p2c2 + m2c4 (11.2)

Equation (11.2) is an example of a Lorentz invariant—i.e. it has the same form
in all inertial frames of reference, as can be verified by applying the Lorentz
transformation to the components of p and E . Also, if we put E = mc2 + ε,
the non-relativistic limit is when ε ! mc2, in which case (11.2) reduces to
ε = p2/2m.

We now consider the case where the particle is not free, but subject to an
electromagnetic field. This field can, in turn, be represented by a scalar potential,
φ(r) and vector potential, A(r) where the electric field is E = −∇φ+ ∂A/∂ t and
the magnetic field is B = ∇ × A. Equation (11.2) then becomes for a particle of
charge q

(E − qφ)2 = (p− qA)2c2 + m2c4 (11.3)

11.2 The Dirac equation

A successful relativistic wave equation for a particle such as an electron was first
obtained by P. A. M. Dirac in 1928. In the same way as the Schrödinger equation
cannot be derived from classical mechanics because it is essentially new physics,
any relativistic equation can only be guessed at by a process of induction, and
its truth or otherwise must be established by testing its consequences against
experiment. Following Dirac, we start this process by considering the time-
dependent Schrödinger equation:

i}
∂

∂ t
ψ = Ĥψ (11.4)

As in the non-relativistic case, (cf. chapter 2) we will begin by considering
the case of a free particle—i.e. A = φ = 0. Following the principles of postulate 3
in chapter 4, we assume that the energy operator Ĥ can be expressed in terms of
the momentum operator P̂ in the same way as E is related to p in the classical
limit. Hence, using (11.2) and (11.4),

i}
∂ψ

∂ t
=

√
[P̂2c2 + m2c4] ψ = 0 (11.5)

We are now faced with the problem of an operator that is a square root of
another operator. There is no definite prescription for handling this, but we do
know that, in order to preserve Lorentz invariance, positional coordinates and
time must appear in a similar way in any relativistic theory. So if we are to make
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the standard replacement P̂x = −i} ∂
∂x etc., the second term of (11.5) should be

linear in these quantities. Applying this principle and following Dirac we write

i}
∂

∂ t
ψ = [cα1 P̂x + cα2 P̂y + cα3 P̂z + βmc2]ψ (11.6)

where the αi and β are dimensionless quantities that are independent of position
and time.

For (11.5) and (11.6) to be consistent, the squares of the operators on the
right-hand sides of these equations should be equivalent. That is

[cα1 P̂x + cα2 P̂y + cα3 P̂z + βmc2]2 = c2 P̂2 + m2c4 (11.7)

Multiplying out the left-hand side of (11.7) and equating corresponding terms
leads to

α2
1 = α2

2 = α2
3 = 1

α1α2 + α2α1 = α2α3 + α3α2 = α3α1 + α1α3 = 0

α1β + βα1 = α2β + βα2 = α3β + βα3 = 0


 (11.8)

This is obviously not possible if αi and β are scalar numbers, and Dirac showed
that the simplest form of αi and β was a set of 4× 4 matrices:

α1 =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 α2 =




0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0




α3 =




0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0


 β =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 (11.9)

The reader should check that these expressions have the properties set out in
(11.8).

We note the appearance of the 2 × 2 Pauli spin matrices within these 4 × 4
matrices. These are given in chapter 6 as

σx =
[

0 1
1 0

]
σy =

[
0 −i
i 0

]
σz =

[
1 0
0 −1

]
(11.10)

We can therefore re-write (11.9) in terms of these and the 2 × 2 unit matrix
(represented by I ):

α j =
[

0 σ j

σ j 0

]
β =

[
I 0
0 −I

]
j = 1, 2, 3 (11.11)
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where σ1 ≡ σx etc. The following properties of the Pauli spin matrices, which
can be easily proved by direct substitution, will be used shortly

σ 2
x = σ 2

y = σ 2
z = I

σxσy = −σyσx = iσz

}
(11.12)

σxσy =
[

i 0
0 −i

]
σyσx =

[−i 0
0 i

]

Similar results hold for cyclic permutations of the Cartesian coordinates.
The fact that the Dirac equation is a matrix equation implies that ψ is a vector

formed out of four functions of position and time:

ψ =



ψ1
ψ2
ψ3
ψ4


 ≡

[
ψ+
ψ−

]
(11.13)

where ψ+ and ψ− are two-component vectors. The Dirac equation (11.6) can
then be written in the form

(σ · p)cψ− + mc2ψ+ = i}
∂ψ+
∂ t

(σ · p)cψ+ − mc2ψ− = i}
∂ψ−
∂ t


 (11.14)

We can separate out the time dependence in the same way as we did in the
non-relativistic case by putting ψ = u exp(−i Et/}) to get

(σ · p)cu− + mc2u+ = Eu+
(σ · p)cu+ − mc2u− = Eu−

}
(11.15)

We note again that all the terms in (11.15) are second-order matrices so that each
of these equations actually represents two equations. We can use the second of
(11.15) to express u− in terms of u+:

u− = c

mc2 + E
(σ · p)u+ (11.16)

We substitute this into the first of (11.15) to get

(σ · p)2c2u+ = (E − mc2)(E + mc2)u+ (11.17)

Expanding the first term on the left-hand side in Cartesian coordinates and re-
arranging, we get

[σ 2
x P̂2

x + (σxσy + σyσx )P̂x P̂y+◦]c2u+ = (E2 − m2c4)u+ (11.18)
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where the symbol+◦ implies repeating the previous expression twice, with cyclic
permutation of the Cartesian coordinates. Using (11.12), we can rewrite (11.18)
as

P̂2c2u+ = (E2 − m2c4)u+ (11.19)

We can solve (11.19) in the representation where P̂ = −i}∇ to get

u+ =
[
v1
v2

]
exp (ik · r) (11.20)

where v1 and v2 are constants and

E2 = }
2c2k2 + m2c4 (11.21)

This is identical to (11.2) if p = }k, which is just the de Broglie relation. The
components of u− can now be obtained by substituting (11.20) into (11.16).

In the non-relativistic limit, we see, referring to (11.16), that u− → 0, and
the total wavefunction is then just u+ which is a plane wave multiplied by the

two-component vector

[
v1
v2

]
. This has the form of a spin-half eigenvector (cf.

chapter 6), the values of v1 and v2 determining the spin direction. We see therefore
that spin is emerging in a natural way from Dirac’s relativistic theory, and this
point will become clearer as we proceed.

We now consider how to extend our treatment to the case where the particle
is not free, but subject to an electromagnetic field represented by a scalar and a
vector potential—cf. (11.3). Following the same procedure as in the free-particle
case, and assuming the particle to have the electronic charge −e, we get, instead
of (11.6),

i}
∂

∂ t
ψ = [cα1(P̂x + eAx)+ cα2(P̂y + eAy)+ cα3(P̂z + eAz)+ βmc2 + V ]ψ

(11.22)
so that (11.15) becomes

σ · (P̂+ eA)cu− + mc2u+ + V u+ = Eu+
σ · (P̂+ eA)cu+ − mc2u− − V u− = Eu−

}
(11.23)

where V = −eφ. The equivalent of (11.16) is now

u− = c

mc2 + E − V

(
σ · (P̂+ eA)

)
u+ (11.24)

We first consider the case where the scalar potential, V , is zero. The equivalent
of (11.17) is then obtained by substituting (11.24) into (11.23) to get([σ · (P̂+ eA)]2)c2u+ = (E2 − m2c4)u+ (11.25)
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Expressing the left-hand side of (11.25) in Cartesian coordinates, we find
that it contains terms of two types. First,

σ 2
x (P̂x + eAx)

2c2u+ = (P̂x + eAx)
2c2u+

using (11.12) and, second,

[σxσy(P̂x + eAx)(P̂y + eAy)+ σyσx (P̂y + eAy)(P̂x + eAx)]c2u+
= ieσz[Ax P̂y − P̂y Ax + P̂x Ay − Ay P̂x ]c2u+

= e}σzc2
[

Ax
∂u+
∂y

− ∂

∂y
(Axu+)+ ∂

∂x
(Ayu+)− Ay

∂u+
∂x

]

= e}σz

(
∂ Ay

∂x
− ∂ Ax

∂y

)
c2u+

= e}σz Bzc2u+ (11.26)

where we have used (11.12) and the differential operator representation Px =
−i}∂/∂x etc. Equation (11.25) then becomes(

(P̂+ eA)2 − e}σ · B
)
c2u+ = (E2 − m2c4)u+ (11.27)

The non-relativistic limit of this equation is(
1

2m
(P̂+ eA)2 − e

m
B · Ŝ

)
u+ = εu+ (11.28)

where Ŝ ≡ 1
2}σ represents the spin angular momentum.

The first term in (11.27) or (11.28) is what is expected for a charged particle
in a magnetic field, but the second term is not. However, it has the same form as
the energy of interaction between a magnetic field and a particle whose angular
momentum is represented by the operator Ŝ and which has a magnetic moment
of magnitude e}/2m. This is exactly what we proposed for a ‘spin-half’ particle
in chapter 6 and we note that the free-electron g-factor comes out as equal to two
automatically.

We now turn to the case of a particle moving in a scalar potential and, for
simplicity, we shall assume that the vector potential is now zero. Following the
same procedure as before, (11.23) and (11.24) lead to[

(σ · P̂)
c2

mc2 + E − V
(σ · P̂)+ V

]
c2u+ = (E2 − m2c4)u+ (11.29)

We define F ≡ c2/(mc2 + E − V ) and consider the first term within the
square brackets in (11.29). Expressing this in Cartesian coordinates leads to two
types of terms. First,

σ 2
x P̂x F P̂x = P̂x F P̂x
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and, second,

σxσy P̂x F P̂y + σyσx P̂y F P̂x = iσz(P̂x F P̂y − P̂y F P̂x )

= }σz

(
∂F

∂x
P̂y − ∂F

∂y
P̂x

)

using (11.12) and the differential operator representation of Px etc.
If we now assume that the potential is spherically symmetric so that V and

therefore F depend only on r ≡ |r|, this last expression becomes

}σz
1

r

∂F

∂r
(x P̂y − y P̂x ) = }σz

1

r

∂F

∂r
L̂z

where L̂z represents the z component of the orbital angular momentum.
Extending these results to all the Cartesian components, (11.29) becomes[

P̂
c2

mc2 + E − V
· P̂+ 2

r

∂F

∂r
L · S+ V

]
c2u+ = (E2 − m2c4)u+ (11.30)

In the non-relativistic limit, we have

F = c2

2mc2 + ε − V

= 1

2m

(
1+ ε − V

2mc2

)−1

� 1

2m

(
1+ V − ε

2mc2

)
(11.31)

so that (11.30) becomes[
P̂2

2m
+ V + 1

m2c2

1

r

∂V

∂r
L · S+ P̂ · V − ε

4mc2
P̂

]
u+ = εu+ (11.32)

This is the time-independent Schrödinger equation for a particle subject to a
potential V , but with two extra terms. The third term is precisely the spin–
orbit term introduced in chapter 6, while the last term is a relativistic correction
of similar order, but which generally does not add significantly to the spectral
structure. We note that our earlier treatment required a factor of two to be
introduced into the definition of the spin magnetic moment and again in the
spin–orbit expression (Thomas precession). Both of these are included in these
expressions, having emerged directly from the Dirac equation. The fact that this is
simply a necessary consequence of requiring consistency between relativity and
quantum mechanics is one of the triumphs of the Dirac equation. We emphasize
again that this does not mean that the electron is in any physical sense ‘spinning’.
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The whole concept of angular momentum and its conservation in a spherically-
symmetric potential is a consequence of our experience with large-scale classical
systems. It actually breaks down for fundamental particles where quantum
effects are important, but can be re-instated if we attribute this intrinsic angular
momentum to them. Of course one implication of this is that all fundamental
particles should have the same value of spin and this is true for the electron, the
proton and neutron and all the quarks. Other particles such as the photon and the
various bosons associated with the strong and weak interactions have integer spin,
but are subject to different equations.

The fully relativistic form of the Dirac equation (11.29) can be solved exactly
in the case of the hydrogen atom in zero B field, where V (r) = −Ze2/(4πε0r)
(cf. chapter 3). We shall not give the details of this here, but simply quote the
result

E = mc2


1+ α2[

n′ +√
( j ′2 − α2)

]2



−1/2

(11.33)

where n′ = n − j ′, and j ′ = j + 1
2 , n and j being the principal quantum number

(cf. chapter 3) and the total angular momentum quantum number respectively
( j = l ± 1

2 —cf. chapter 6) and α ≡ e2/4πε0}c.

11.3 Antiparticles

The classical relativistic relation (11.2) expresses the square of the total energy
E of a free particle in terms of the square of its momentum p. It follows
that there is no restriction on the sign of E and the equation has a full set of
solutions for E less than −mc2 as well as for E greater than mc2. Classically,
these are rejected as being unphysical and this is no problem in practice as
there is no mechanism for reaching the negative-energy states from the positive
ones. However, in the quantum-mechanical case, negative energy states could
be reached by a discontinuous quantum transition, and spontaneous transitions to
states of ever-lower energy might be expected.

It is clear from (11.19) that the Dirac equation does, indeed, possess solutions
with

E = −
√
}2c2k2 + m2c4

To overcome the problem of transitions to negative-energy states, Dirac made
the radical suggestion that these were already filled so that transitions into them
would be prevented by the Pauli exclusion principle. He then considered the
consequences if an electron were excited from one of these filled states with
energy−(mc2+ε) into a state of energy (mc2+ε) under the influence of a photon
of energy 2(mc2 + ε). The excited electron has positive energy and therefore
behaves quite normally, but the filled sea of negative energy states now has a
vacancy. This means that the total energy of the negative-energy states has been



234 Relativity and quantum mechanics

E
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–mc2

–p

electron

vacancy

positron

mc2

Figure 11.1. An electron can be excited from one of the filled negative energy states
to create a free electron of positive energy and a vacancy. The properties of the
negative-energy sea containing a vacancy are the same as those of a positron.

increased by mc2 + ε and their net momentum is −p, where p is the momentum
of the vacancy and hence equal to that of the excited electron. Referring to
figure 11.1 we consider how this momentum changes under the action of an
applied electric field. All the negatively charged electrons will accelerate in a
direction opposite to that of the field, taking the vacancy with them. As a result,
the net momentum−p increases in the same direction as the field. It follows that
the negative-energy sea plus a vacancy will behave just like a positively charged
electron. This particle, which had not been observed when Dirac developed his
theory, is called a ‘positron’, and the photon has therefore created an electron–
positron pair. The experimental observation of the positron a few years after this
prediction (by Anderson in 1933) was a great success for Dirac’s theory. A further
consequence is that all spin-half particles (protons, quarks, etc.) should have
analogous ‘antiparticles’ and this has also been confirmed. Similar arguments
to these are also used in the physics of semiconductors, where positive-charge
carriers result from the excitation of electrons from otherwise full bands.

Despite its predictive success, however, there are problems with Dirac’s
early model. In particular, the sea of occupied negative states has no observable
properties until a vacancy is created. This must mean that the infinite set of
particles has no gravitational mass and no charge, despite the fact that our analysis
of the expected behaviour of the vacancy assumed that all the electrons responded
to an applied field as if they had charge −e. Another feature of Dirac’s model is
that there is symmetry between the positron and the electron; a theory that posited
electrons as being associated with vacancies in an otherwise filled sea of positrons
would make identical predictions. Later ‘quantum-field’ theories dispense with
the idea of a filled sea and simply postulate that particle and antiparticle pairs are
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excited states of the ‘Dirac field’ whose ground state is the vacuum. We give a
brief introduction to the ideas of field theory in a later section.

11.4 Other wave equations

If, instead of following Dirac, we operate on (11.5) by

i}
∂

∂ t
+

√
[c2 P̂2 + m2c4]

we get

}
2 ∂

2ψ

∂ t2
+ [c2 P̂2 + m2c4]ψ = 0 (11.34)

This is known as the Klein–Gordon equation, which was actually discovered
before the Dirac equation. It was initially thought not to be relevant as the particle
probability density associated with it is not necessarily positive. However, it was
later realized that this particle density could be interpreted as a charge density, its
sign depending on whether particles or antiparticles were dominant. Solutions to
the Dirac equation are also clearly solutions to the Klein–Gordon equation, but
the latter possesses another set of solutions with no intrinsic angular momentum.
It is therefore used to describe the properties of particles with zero spin.

The relativistic equations that describe the photon are, of course, Maxwell’s
equations. These have to be further quantized to reveal the properties of the
photon, as is discussed briefly in the next section.

11.5 Quantum field theory and the spin-statistics theorem

The spin-statistics theorem states that the wavefunctions of particles with integer
spin are symmetric with respect to exchange of the labels on the particles—
ψ(1, 2) = ψ(2, 1)—and obey Bose–Einstein statistics (see chapter 10). In
contrast, particles with half-integer spin have antisymmetric wavefunctions—
ψ(1, 2) = −ψ(2, 1)—obey Fermi–Dirac statistics, and are consequently subject
to the exclusion principle. The spin-statistics theorem was shown by Pauli in 1940
to follow from some quite deep symmetry properties of relativistic quantum field
theory. Many theoretical physicists over the years have believed that such a simple
connection between two apparently quite separate properties of the fundamental
particles should have a simple proof. A number of attempts to find such a proof
have been made but, so far, none has emerged that has been generally accepted.
Pauli’s proof is well beyond the compass of this book, but we will give a short
introduction to some of the basic ideas of field theories and explain how these
give some indication of the truth of the spin-statistics theorem.

Quantum mechanics as developed up to now has taken the existence
of particles such as the electron as given. In contrast, the quantum field
approach builds them into the formalism of the theory itself. The starting
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point is the vacuum—space and time with no matter and no radiation. This
state is represented by the quantum-mechanical state vector |0〉. We then
define a ‘creation operator’ â† which operates on |0〉 to create the state |1〉,
which represents the vacuum plus one particle. Particles are removed by the
corresponding ‘annihilation operator’, â.1

To develop a field theory for the electron from the Dirac equation, we
consider the case of a free electron with momentum p = }k, so that E =
±E0 ≡ ±

√
(m2c4 + p2c2). A general solution of the Dirac equation is a linear

combination of the wavefunctions corresponding to ±E0 and therefore has the
form

� = [au1 exp(−i E0t/})+ b∗u2 exp(i E0t/})] exp(ik · r) (11.35)

where u1 and u2 are the time-independent parts of four-component vectors (cf.
(11.13)) and a and b∗ are constants. We note from our earlier discussion that u1
and u2 are orthogonal and we can also assume that they are normalized. That is,

u†
1u1 = u†

2u2 = 1

u†
1u2 = u†

2u1 = 0 (11.36)

where the superscript † indicates Hermitian conjugate (cf. the discussion of matrix
mechanics in chapter 6). The probabilities of finding the system in the states
with energy E = E0 and E = −E0 are |a|2 and |b|2 respectively. From our
earlier discussion, we expect |a|2 to be the probability of the system containing an
electron of momentum p, while |b|2 is the probability of a positron of momentum
−p. If we confine ourselves to low-energy states, we cause the time-dependent
Schrödinger equation, and the expectation value of E is given by

〈E〉 =
〈
�∗i}∂�

∂ t

〉
= E0(a

∗a − bb∗) (11.37)

while that of the total charge is

〈Q〉 = −e〈�∗�〉 = −e(a∗a + bb∗) (11.38)

using (11.36).
Our theory would agree with the experimental observation of electrons and

positrons, if the signs of the second terms on the right-hand sides of (11.37) and
(11.38) were reversed. As we shall see, this is just what quantum field theory can
achieve. To move to a quantum field theory, we replace the constants a and b∗
by operators â and b̂† and their complex conjugates by â† and b̂ which are the
Hermitian conjugates of â and b̂†. As always, when we extend our theory into a
1 There are separate creation and annihilation operators for every allowed value of the momentum
and spin, so â and â† may be labelled accordingly. These labels are omitted in our discussion to assist
clarity. Dirac notation introduced in chapter 6 is being used.
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new area we do so inductively, testing the predictions of the new theory against
experiment. As a∗a is a measure of the probability of the system being in a state
of positive E , the operator â†â is taken to represent the number of electrons,
while the number of positrons is represented by the operator b̂†b̂. The operators
â† and b̂† are taken to be ‘creation’ operators: the effect of â† is to increase the
number of electrons in the state by one. Similarly, â and b̂ are associated with
the ‘annihilation’ of electrons and positrons respectively, reducing the number of
particles in the state.

To proceed further, we have to postulate more specific properties of the
creation and annihilation operators. We encountered similar operators (then called
‘raising and lowering’ operators) when we discussed the harmonic oscillator
in chapter 4. In that case the commutation relation, [â†, â] = 1, plus the
condition that all energy levels had to be positive, led to the energy spectrum
En = (n + 1

2 )}ω. If we assume that the same condition holds in the present case,
the first term in (11.37) leads to a ladder of positive-energy levels, but the second
term produces a ladder of ever decreasing negative-energy levels, which is just
what we are trying to avoid.

Dirac and Jordan showed that in order to produce a field theory consistent
with the Dirac equation, the operators â, b̂, â† and b̂† must obey ‘anticommutation
relations’, which are similar to commutation relations, but with a positive rather
than a negative sign. That is,

ââ† + â†â = b̂b̂† + b̂†b̂ = 1

ââ = â†â† = âb̂ + b̂â = 0 etc. (11.39)

The quantities N̂e = â†â and N̂p = b̂†b̂ represent the total number of electrons
and positrons respectively. If states with other values of the momenta are
included, all quantities of the type â1â†

2 + â†
2 â1 etc. are equal to zero.

We first establish the creation and annihilation properties of â† and â, noting
that identical arguments can be applied to b̂† and b̂. From (11.5) we have

ââ|〉 = 0

â†â†|〉 = 0 (11.40)

using Dirac notation (cf. chapter 6). There are only two states, |0〉 and |1〉, that
satisfy these relations and therefore obey the conditions

â|0〉 = 0 â|1〉 = |0〉
â†|1〉 = 0 â†|0〉 = |1〉 (11.41)

which directly lead to

N̂e|0〉 = â†â|0〉 = 0

N̂e|1〉 = â†â|1〉 = |1〉 (11.42)
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so the eigenvalues of N̂e are ne = 0 (corresponding to an empty state) and
ne = 1 (a filled state). Remembering that we are currently considering states with
particular values of k and σ , there are only two allowed states of the system: one
with no electrons and one with a single electron, which is just the Pauli exclusion
principle. Similar arguments using b̂ and b̂+ produce corresponding results for the
position states. We can also see how field quantization leads to the antisymmetric
properties of the wavefunction. Let |1, 2〉 be the ket representing the state of two
electrons, labelled 1 and 2. We can generate this by the operation of the creation
operators on the vacuum state |0〉:

|1, 2〉 = a†
1a†

2 |0〉
Hence

|2, 1〉 = a†
2a†

1 |0〉 = −|1, 2〉 (11.43)

where the last step uses (11.39).
Returning now to the properties of the state (11.35), the total energy (11.37)

becomes

〈E〉 = E0〈â†â − b̂b̂†〉 = E0〈â†â + b̂†b̂ − 1〉 = E0(ne + n p) (11.44)

where we have assumed that the system is in an eigenstate of N̂e and N̂p with
eigenvalues ne and n p respectively. We can similarly express the total electric
charge (cf. (11.38)) as

〈Q〉 = −e〈â†â + b̂b̂†〉 = −e(ne − n p) (11.45)

We see that 〈E〉 is just the sum of the energies of the electrons and positrons,
which are both positive. Moreover, 〈Q〉 is just the expected net charge. It should
be noted that we have omitted a term−E0 in (11.44) and−e in (11.45) in order to
ensure that the energy and charge of the vacuum state are both zero. Such ‘zero-
point’ terms are infinite when totalled over all the energy states: the subtraction
of such infinities in order to obtain a physical result is a common feature of more
advanced aspects of quantum-field theory.

Summarizing, we have shown that a field theory which associates positive
energy with the existence of both electrons and positrons requires the creation and
annihilation operators to obey anticommutation relations. This, in turn, ensures
that the occupation numbers of the states are either zero or one, so that the Pauli
exclusion principle is obeyed.

As stated earlier, this argument leading to the Pauli exclusion principle does
not constitute a complete proof. One reason is that it is much harder in the more
general case when the effects of interactions are included. It also says nothing
about the properties of particles with integer spin where Bose–Einstein statistics
are expected to apply. However, if field quantization is applied to the Klein–
Gordon equation in the spin-zero case, it is found that positive energies for both
particles and antiparticles are obtained assuming that the creation and annihilation
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operators obey commutation rather than anticommutation relations. These permit
multiple occupation of the states and hence Bose–Einstein statistics. To complete
the proof, we also have to show that fermion-type solutions to the Klein–Gordon
equation, that are not also solutions to the Dirac equation, are not allowed and this
is considerably harder. A further problem is that the Dirac equation relates only
to spin-half and the Klein–Gordon equation only to spin-zero particles, while the
spin-statistics theorem refers generally to even and odd numbers of half-integers.
However, particles with spin greater than one-half may be properly described as
tightly bound composites of spin-half particles, which would then obey the spin-
statistics theorem.

A fundamental feature of all these approaches to the spin-statistics theorem
is that they rely on the relativistic regime to predict a result that applies to
systems where relativistic effects are otherwise negligible. This has prompted
quite different approaches to the problem, notably a suggestion by Berry and
Robbins in 1997 that the antisymmetry of the two-fermion wavefunction may
be associated with a geometrical phase factor resulting from the topology of the
system.

As was pointed out in chapter 1, quantum mechanics began with the idea of
the quantum of electromagnetic radiation (or photon), but this is properly included
in quantum mechanics only after Maxwell’s equations for the electromagnetic
field are quantized in a similar way. The resulting photons have the energy and
momentum given by the Planck and de Broglie relations and are found to have
total-spin quantum number j = 1. The states with m j = ±1 correspond to
right- and left-circularly polarized plane waves; the state with m j = 0 would
correspond to a longitudinally polarized electromagnetic wave and is forbidden.
The interaction between the fields representing matter and radiation can also be
built into quantum field theory and new results have been predicted that have been
experimentally confirmed.

As we indicated earlier, the essential advantage of quantum field theory
is that it includes the existence of particles in the formalism as quanta of the
field, whereas previously we assumed the existence of, say, an electron whose
quantum properties were described by the Schrödinger equation. The concept of
the quantized field also enables an alternative and, perhaps, deeper understanding
of the concept of indistinguishability. Rather than saying that ‘particles 1 and
2 are identical’ we can simply say that the field contains two excitations which
we do not attempt to label. An analogy is sometimes drawn between having two
identical pound coins and two pounds in a bank account. In the latter case the two
units have no individual identity and field theory provides a similar conceptual
basis for the description of a field containing two quanta.

Problems

11.1 Show by substitution that the matrices given in (11.9) have the properties set out in (11.8).

11.2 Show that if E � mc2, the energy eigenstates of a spin-half particle have definite helicity—i.e.
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they are in eigenstates of the spin component parallel to the momentum direction.

11.3 Show that in the limit where α is small, the relativistic energy levels (11.33) are equal to those
obtained for the hydrogen atom in chapter 3 (3.65).

11.4 Obtain an expression for the wavefunction of a free particle with negative energy by using the
first of (11.15) to express u+ in terms of u− and hence obtain a version of (11.20). Hence show
that the wavefunctions corresponding to the same values of k and v but with oppositely signed E are
orthogonal.

11.5 Explain why the field operator representing the scattering of particles from states labelled 1 and
2 into states labelled 3 and 4 is

c†
3c1 + c†

4c2



Chapter 12

Quantum information

This chapter aims to provide a first introduction to some of the new applications of
the ideas of quantum mechanics that have been developed during the last twenty
years or so of the twentieth century. The topics chosen reflect our increased
understanding of a number of concepts and their application to new phenomena
that have been predicted and sometimes observed. They all rely on the interplay
between the two types of time dependence implicit in the fundamental postulates
set out in chapter 3:

Postulate 5 Between measurements, the development of the wavefunction with
time is governed by the time-dependent Schrödinger equation.

Postulate 2 Immediately after a measurement, the wavefunction of the system
will be identical to the eigenfunction corresponding to the eigenvalue obtained as
a result of the measurement.

There is generally a clear distinction between ‘unitary evolution’ under the
influence of the time-dependent Schrödinger and the ‘collapse’ associated with a
measurement. In unitary evolution (so called because in a matrix representation,
the initial and final states are connected by a unitary matrix) the final state of
the system is completely determined by the Hamiltonian operator and the initial
state. It follows that unitary evolution is reversible as the initial state can be
generated from the final state by the same time-dependent Schrödinger equation
with the sign of the time coordinate reversed and ψ replaced by ψ∗. In contrast,
the result of a measurement on quantum mechanics is generally unpredictable;
the system ‘collapses’ at random into one of a set of possible outcomes. Thus
collapse is an irreversible change that occurs in one time direction only. Although
in practice we easily know when to apply which form of time dependence, it is
very difficult to set objective criteria for this. We shall discuss the consequent
‘quantum-mechanical measurement problem’ in more detail in chapter 13.

All the examples to be discussed in this chapter refer to the behaviour of
two-state systems. A prime example of these is the spin-half particle, whose

241



242 Quantum information

component of angular momentum relative to, say, the x axis can have the
values ± 1

2}. Moreover, if we choose a different axis of quantization, the new
eigenfunctions can be expressed as linear combinations of the old. For example,
if αz and βz represent positive and negative z components respectively while
αx and βx represent the corresponding quantities measured with respect to the
x direction,

αx = 2−1/2(αz + βz)

βx = 2−1/2(αz − βz) (12.1)

cf. chapter 6 (6.23). Another example of a two-state system is a plane-polarized
photon. Plane polarization is a familiar concept in classical optics where it refers
to the plane in which the E vector of the electromagnetic wave vibrates. When
experiments are done on weak light, it is found that this property can also be
applied to individual photons. The two states of polarization follow very similar
rules to the spin directions in the spin-half case. For example, the states of being
polarized at either plus or minus 45◦ to the horizontal axis are related to the
horizontally and vertically polarized states by an equation of the same form as
(12.1).

Atoms can also be used as two-state systems despite the fact that they
generally have an infinite number of bound states! This is achieved by ensuring
that they are isolated from all external influences other than radiation whose
frequency (typically in the microwave region) matches the energy difference
between two of the states. To minimize the frequency of unwanted collapses
due to spontaneous transitions between the states, systems are chosen where the
energy difference is very small (cf. chapter 8).

12.1 Quantum cryptography

Cryptography is the science of the exchanging of messages in a coded form that
makes them indecipherable to anyone else. We shall not attempt anything like
a full survey of this immense subject, but will concentrate on how the particular
properties of quantum systems can be used in this area. To transmit any message
at all, it must be coded in some form. The pages in this book do this using
the alphabet and other symbols, as well as relying on the reader’s and writer’s
knowledge of the English language and mathematics. When the present edition
was written using a computer with a word-processing package, the letters, figures
and symbols were further encoded by the computer into a set of binary numbers
represented by two symbols ‘1’ and ‘0’. In this way any message at all can be
represented by a sequence of 1s and 0s, and any system that is capable of existing
in two distinct states can be used to encode such a representation of a message.
This procedure is now universally used in electronic transmission where the 1s
and 0s are often represented by voltage pulses of different sizes.
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The essential property of an encrypted message is that the information
in it should be understandable only to the sender and the receiver, and be
meaningless to a third party. This is achieved by processing the message using
some mathematical procedure known as a ‘cypher’, which can be decoded only if
the reader is in possession of a ‘key’. Early ‘keys’ were in the form of code books,
but modern cryptography uses mathematical procedures that depend on knowing
a comparatively small key, typically a few thousand binary bits in length.

For example, a message, M , could be coded as E by the algorithm

E = Ms mod c (12.2)

where the right-hand side means that the number M is raised to the power s and
the answer expressed as a number of base c. If c is a product of two prime numbers
(p and q), it can be shown that the message can be decoded by the algorithm

M = Et mod c (12.3)

where t is a simple function of p and q . Provided p and q are kept secret, all
the other quantities can be exchanged publicly. If c is large enough, breaking the
code by searching for the prime factors , p and q , would take a fast conventional
computer an impossibly long time (more than 106 years if c is 1000 binary digits
in length). As we shall see later in this chapter, this factorization problem is one
where quantum computers could, in theory, make a dramatic contribution, but it
may well be 106 years before this technology is available!

The present section describes a method whereby a sender and receiver can
both acquire knowledge of a number, while being sure that no eavesdropper
knows it. In this way they can both follow the same coding process, even if
they do not know what this is going to be before the exchange takes place. This
key distribution process is where quantum mechanics comes in.

A sender (conventionally known as ‘Alice’) could transmit a message to a
receiver (‘Bob’) in the form of a stream of photons with an appropriate sequence
of polarization directions, say horizontal (H) for 0 and vertical (V) for 1. However,
there is no obvious reason why the message should not be intercepted by an
eavesdropper (‘Eve’) and re-transmitted to Bob without either of them knowing
that this had happened. We can avoid this by exploiting the specifically quantum
properties of the particles.

The first protocol aimed at this end was suggested in the 1980s. The central
idea is that Alice, instead of sending just H or V photons, sends a sequence where
some are H/V, but others are ±45◦. Both H and 45◦ are to be interpreted as
0, while V and −45◦ represent 1. Which orientations Alice uses are decided at
random, but she keeps a record of them. When Bob detects the photon he also
varies the orientation of his apparatus between H/V and ±45◦ at random and
records which apparatus he uses as well as the results he obtains. Alice and Bob
then openly tell each other which settings they used in each case and discard those
where these were not the same—on average half the total. The remainder consists
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Figure 12.1. Alice sends a series of photons to Bob, which are polarized either H/V or
±45◦ at random. Bob makes a similar set of randomly selected measurements on the
photons he receives. They then exchange information on the measurement orientations
they have chosen and use the results for the subset where these are the same, to define the
key to be used. In the absence of Eve’s intervention, Alice and Bob have the same key, but
this no longer holds if Eve makes an intermediate measurement.

of a set of numbers whose values they both know and which they can then use
to decide which procedure they will follow to encode and decode messages sent
openly between them.

We now consider the effect of the possible intervention of Eve. She may
intercept the photons sent by Alice, but she has no means of knowing the
orientation Alice used when sending them. The simplest thing she can do is to
randomly guess which orientation might have been used for a particular photon,
set her apparatus in this orientation, record the result and send it on to Bob.
On average, she will guess right one-half of the time, but there is only a 50%
probability that this guess will be the same as Bob’s. The upshot is that one-half
of the photons that Bob later believes are reliable, have been corrupted by passing
through Eve’s apparatus set in the ‘wrong’ orientation. About one-half of these
(i.e. one-quarter of the final sequence used as the key) will decode as bits that are
the opposite of those sent by Alice. Alice and Bob therefore no longer have a set
of numbers in common and soon find they cannot decode each other’s messages.
They have therefore detected the presence of Eve and can take appropriate action.
An illustration of how this process works is shown in figure 12.1 and table 12.1.

This protocol succeeds because of the collapse resulting from a quantum
measurement. A necessary concomitant of this is the system’s vulnerability to
random processes (noise). Even in the absence of Eve, Alice and Bob will
successfully end up with a common key only if their apparatuses are accurately
aligned when they believe they are, and if the polarization state has not been
changed (e.g. rotated slightly) during the transmission. Moreover, even though
Eve cannot accurately read the message and her attempt to do so can be detected,
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Table 12.1. The properties of a typical set of 12 photons analysed by the apparatus shown
in figure 12.1. The asterisks in the final column mark cases where Eve’s intervention has
resulted in Bob having the wrong result. (AS, Alice’s polarizer setting; PA, polarization
of photons sent by Alice; AM, Alice’s message; BS, Bob’s analyser setting; BR, Bob’s
result; AR, accept/reject; K, common key; ES, Eve’s polarizer setting; PE, polarization of
photons sent by Eve.)

Alice Bob Bob
(Eve off) (Eve on)

AS PA AM BS BR AR K ES PE BR K

H/V H 0 H/V H y 0 H/V H H 0
H/V V 1 H/V V y 1 ±45◦ − − 0
±45◦ + 0 H/V H n H/V H H
H/V H 0 ±45◦ − n H/V H −
±45◦ + 0 ±45◦ + y 0 H/V H − 1*
±45◦ − 1 H/V V n ±45◦ − V
H/V V 1 ±45◦ − n ±45◦ − −
±45◦ − 1 H/V V n H/V H H
±45◦ + 0 ±45◦ + y 1 H/V V + 0*
±45◦ + 0 H/V H n ±45◦ + H
H/V H 0 H/V H y 0 H/V H H 0
H/V V 1 H/V V y 1 ±45◦ V − 1*

her presence apparently makes the channel of communication useless. There are
strategies for combating this by further public exchange of information, as a result
of which Alice and Bob can end up with a shared key considerably shorter than
the original, but with a very low probability of Eve also knowing it.

Unlike the cases to be discussed in the rest of this chapter, quantum
cryptography is quite easy to carry out experimentally. Secure key interchange
has been demonstrated by sending polarized photons over distances up to about
20 km of standard optical communication fibre.

12.2 Entanglement

The rest of the examples we discuss involve two or more particles in what is called
an ‘entangled state’. In quantum mechanics, the word ‘entanglement’ refers to a
quantum state of two or more particles in which the probabilities of the outcome
of measurements on one of them depend on the state of the other, even though
there is no interaction between them.

As an example of entanglement, consider two spin-half particles in a state
where their spins are opposite, but we have no other information about them. The



246 Quantum information

spin part of their wavefunction has the form

ψ(1, 2) = 2−1/2[αz(1)βz(2)− βz(1)αz(2)] (12.4)

where αz(i) and βz(i) represent particle i with a positive and negative spin
component respectively relative to the z axis. However, the only information this
function contains is that the spins are opposite—it does not tell us the absolute
direction of either spin. This is because ψ(1, 2) is independent of the direction of
the axis of quantization. To see this, we apply the transformation (12.1) to express
ψ(1, 2) in terms of αx (i) and βx (i) and yet:

ψ(1, 2) = −2−1/2[αx (1)βx(2)− βx(1)αx(2)] (12.5)

which is the same as (12.4) apart from an irrelevant change of sign. We therefore
drop the suffixes on α and β from now on when we describe states entangled in
this way.

We now consider the effect of performing a measurement of the z component
of either of the spins when the system is in the state ψ(1, 2). Clearly we expect to
get a positive or a negative result at random with equal probability. But suppose
we measure the spin of particle 2 after we have measured the spin of particle 1
and obtained (say) a positive result. As a result of this first measurement, the
system must have collapsed into an eigenstate of the spin-component operator
with positive eigenvalue. It therefore has the form

ψ(1, 2) = αz(1)βz(2) (12.6)

and we now do know that the particles are in eigenstates of Ŝz , because the
state is now disentangled. A measurement of the z component of the spin of
the second particle can now only yield a negative result. It follows that the
probabilities of obtaining particular values of the spin of one particle depend
on what measurements have been previously carried out on the other. It should
be noted that this result is independent of other properties of the particles, in
particular their position: particles can be entangled even when a long distance
apart. This apparent influence of the operations carried out on one particle on
the properties of a distant particle is known as ‘non-locality’ and we discuss its
implications for our understanding of the conceptual basis of quantum mechanics
in chapter 13.

12.3 Teleportation

The word ‘teleportation’ entered the English language via the science-fiction
series Star Trek. In this fantasy, a person or object could be transported to a
distant destination using a transmitter that measured all the properties of the object
and sent them (presumably by some radio link) to a receiver that re-assembled
the information to re-create the object. In the process the original object was
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Figure 12.2. Quantum teleportation. Particles 1 and 2 are prepared in an entangled state.
Alice allows particle 2 to interact with particle 3, then measures a property of particle 2
and uses a classical communication channel to tell Bob which of the four possible results
she obtained. Bob can then transform particle 1 into a state identical to the initial state of
particle 3.

destroyed (de-materialized?). For a long time it was believed that such a process
was not only impossibly difficult in practice, but was forbidden in principle by
quantum mechanics. This is because the uncertainty principle ensures that we can
never determine all the properties of the state of a quantum system, and hence all
the information that would be needed to reproduce it. This principle is sometimes
called the ‘no-cloning’ theorem, which states that it is impossible to produce a
particle with exactly the same quantum properties as another without altering the
state of the initial particle. More recently, however, it has been realized that it is
possible to use entanglement to copy the properties of one particle onto another
at a distant destination, without making a record of them in the process, although
inevitably changing the quantum state of the original particle. This process has
become known as ‘quantum teleportation’.

We consider the simplest possible example of a spin-half particle (which we
shall call particle 3) in a state given by

ψ(3) = Aα(3)+ Bβ(3) (12.7)

where the values of A and B are unknown. An experimentalist (Alice of course)
wants to transfer these values to a different particle, which she has sent to another
experimenter (Bob). We assume that Alice also has available a pair of previously
entangled particles (1 and 2) whose quantum state is given by (12.4). The total
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wavefunction of all three particles is therefore

�(1, 2, 3) = 2−1/2[Aα(3)+ Bβ(3)][α(1)β(2)− β(1)α(2)] (12.8)

This is algebraically identical to the expression

�(1, 2, 3) = − 1
2 [Aα(1)+ Bβ(1)]ψ1(2, 3)+ 1

2 [Aα(1)− Bβ(1)]ψ2(2, 3)

− 1
2 [Aβ(1)+ Bα(1)]ψ3(2, 3)− 1

2 [Aβ(1)− Bα(1)]ψ4(2, 3)
(12.9)

where

ψ1(2, 3) = 2−1/2[α(2)β(3)− β(2)α(3)]
ψ2(2, 3) = 2−1/2[α(2)β(3)+ β(2)α(3)]
ψ3(2, 3) = 2−1/2[α(2)α(3)− β(2)β(3)]
ψ4(2, 3) = 2−1/2[α(2)α(3)+ β(2)β(3)] (12.10)

as can be checked by expanding the right-hand sides of (12.8) and (12.9).1

Alice sends particle 1 to Bob and then performs a measurement on
particles 2 and 3. The essential feature of this measurement is that it is
represented by an operator whose eigenfunctions are the four ψi s, so that the
whole system, including particle 3, collapses into one of the terms in (12.10).
Alice communicates the result of this to Bob, using a classical channel of
communication—cf. figure 12.2. Thus, if Alice obtains the result corresponding
to ψ1, Bob’s particle (1) has the same spin function as was originally possessed
by particle 3, which of course was Alice’s original intention. If she obtains one of
the other results and lets Bob know, then Bob can transform the state function into
that required simply by rotating the spin using a magnetic field B . For example,
to generate the second square-bracketed expression from the first, we use (8.13)
in chapter 8 to get

A(t) = A(0) exp(− 1
2 iωpt) and B(t) = A(0) exp( 1

2 iωpt) (12.11)

where ωp = eB/m. We get the required result (apart from an irrelevant phase
factor) if t = πm/eB .

We note that a classical communication channel by which Alice
communicates the result of her measurement to Bob is an essential part of
the experiment. This is an example of a general principle that forbids the
transmission of information using entanglement alone. Otherwise we could
transmit information instantaneously in breach of the principles of special
relativity. We shall return to this point in chapter 13.

1 This set of states (known as ‘Bell states’ after John Bell—see chapter 13) can be shown to have the
maximum possible entanglement for two spin-half particles.
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The principles of quantum teleportation have been experimentally
demonstrated using atomic beams and also in the case of particular photon states.
However, before any significantly complex object could be teleported, it would
have to be coupled in some way to a system consisting of as many entangled
particles as its relevant properties. The practicalities of this are certainly well
beyond our present technology.

12.4 Quantum computing

A conventional computer essentially manipulates binary bits according to a set of
rules, the operation performed on one bit often depending on the state of one or
more of the others. In a ‘quantum computer’ the binary bits are two-state quantum
systems known as ‘qubits’ and the operations proceed by unitary evolution (i.e.
the states of the qubits evolve according to the time-dependent Schrödinger
equation) until we make measurements on them. It has been shown that there is no
obstacle in principle to the construction of a quantum computer that would operate
on qubits in the same way as a conventional computer processes conventional bits.
However, the emphasis is on the phrase ‘in principle’. As we shall see, quantum
computers imply the entanglement of large numbers of qubits; such entangled
states are extremely sensitive to noise and decoherence, so the practical obstacles
to constructing a useful device are immense and would imply a completely new
technology.

Of course there is no reason why anyone would go to such trouble to
construct something that could do no more than a conventional computer. The
great interest in quantum computers is that, although they would carry out most
computing tasks no more efficiently than conventional machines, there are some
processes that would be performed at an immensely faster speed. The example
most often quoted is the factorization of a large number into its prime-number
components. As mentioned earlier, this operation plays an important role in
some cryptographic protocols. For a number consisting of N decimal digits, the
best known conventional method requires a number of computing steps that is
proportional to exp(2L1/3 ln L2/3), where L = ln N . In contrast the number of
operations required by a quantum computer has been shown to be about 300L3.
For L equal to 10, the classical algorithm is faster, but the quantum computer
takes over for larger numbers: for L = 200, the calculation would take 109 years
classically, but could be performed by a quantum computer in about 8 hours.

As a first step to understanding the principles of quantum computation, we
consider a particular simple operation, known as a NOT gate. This has the
property of reversing the state of a bit: if we input 0 we get out 1, while if we input
1 we get out 0. It is very easy to devise a unitary operation that will carry out this
procedure on a qubit, represented by a spin-half atom. We simply pass the spin
through a magnetic field, adjusted so that it rotates the spin through 180◦ in the
process. The important thing to note is that the same operation is performed if the
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initial state is a linear superposition of the states. Thus if 0 and 1 are represented
by α and β, and we pass the spins through the same field as defined in the previous
section (cf. (12.11)), we get not only

and

α = 2−1/2
[

1
1

]
→ −i2−1/2

[
1
−1

]
= −iβ

β = 2−1/2
[

1
−1

]
→ −i2−1/2

[
1
1

]
= −iα

(12.12)

but also
Aα + Bβ →−i(Aβ + Aα) (12.13)

where A and B are any constants. This single NOT gate can be considered as a
very simple computer program, if we imagine that we do not know in advance
what the result of passing data (in this case a single bit) through it will be. If
this were a conventional device, we could fully determine its properties only by
running it twice: once with each of its possible inputs (0 or 1). In the quantum
case, however, if we run the program once only using the left-hand side of
(12.13) as input, then the wavefunction of the output—i.e. the right-hand side
of (12.13)—is a linear combination of both outcomes. Thus, both calculations
have been performed in one step. Before getting carried away by this apparently
miraculous result we should realize that, in order to access this information, we
have to make a measurement, which inevitably involves collapse. This means
that we can determine only one component of the spin, so there is apparently no
practical advantage in performing the calculation in this way. For this reason,
it is generally true that quantum computation has little or no advantage over
conventional methods. However, there are exceptions to this rule when a subtle
interplay of unitary evolution and collapse can be employed to perform particular
calculations with hugely improved efficiency. One of these is the determination
of the period, r , of a periodic function f (x) of a variable x . For reasons we
shall not go into, this is a key part of the algorithm to factorize a product of two
prime numbers. We shall give an outline of the principles of how r might be
obtained, provided that the correct unitary operations could be performed and the
appropriate measurements made.

We assume that we know that N/2 < r < N for some N and define
n = 2 ln(N). If we have 2n qubits, we could use n of them (known as the ‘x
register’) to code every number from 0 to w−1, where w = 2n and use another n
to code the corresponding values of f (x) (the ‘y register’). Table 12.2 illustrates
this for the case where n = 3 and f (x) = 7 cos(2πx/3)). However, what we
actually do is first to set all the qubits to 0 (i.e. in a quantum state α) and then
subject the x register to a coherent operation that leaves it in the state

ψ(1, 2, . . . , n) = 1√
w

w−1∑
i=0

ηi (1)ηi (2) . . . ηi (n) (12.14)
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Table 12.2. The x register consists of qubits 1–3 representing values of x from 0–7, while
the y register consists of qubits 4–6 which can code the corresponding values of f (x).
When a linear superposition of the states in column 2 is used to calculate f , the outcome
is a linear combination of the products of the states in columns 2 and 3. A measurement of
the states of the column-3 particles causes a collapse into either the state βββ or αβα. If
the first result is obtained, the first three qubits will be in a linear combination of the states
listed in column 4; these clearly possess the periodicity of f (x) and the same is true if the
alternative result is obtained. A measurement of the new state of the x register yields a
result, from which the period can usually be deduced.

x register y register x register after x register x register after
1st measurement after F.T. 2nd measurement

x ≡ i j = 1, 2, 3 j = 4, 5, 6 j = 1, 2, 3 j = 1, 2, 3 j = 1, 2, 3

0 ααα βββ ααα ααβ

1 ααβ αβα

2 αβα αβα

3 αββ βββ αββ ααβ

4 βαα αβα

5 βαβ αβα

6 ββα βββ ββα ααβ ααβ

7 βββ αβα

where ηi ( j) is the state (α or β) of the j th qubit of the number i . For example,
in the case where n = 3, ψ(1, 2, 3) is proportional to the sum of the terms in
the second column of table 12.2. We note that all the qubits in the x register are
now in an entangled state. The next step is to subject the 2n qubits to another
coherent operation, the outcome of which is to place them all in an entangled
state. To do this, we assume that we have a computer program that can calculate
f (x) for any given value of x by a sequence of unitary operations. If we were to
input a number such as that represented by one of the states listed in the second
column of table 12.2, the state of these n qubits would be unchanged, but the
state of the second set would evolve to represent the value of f (x) as in column 3
of table 12.2. What we actually do is input the linear superposition (12.14) of x-
register states. By standard quantum mechanics, the wavefunction of all 2n qubits
evolves into

ψ(1, 2, . . . , 2n) = 1√
w

w−1∑
i=0

ηi (1)ηi (2) . . . ηi (n)ηi (n + 1) . . . ηi (2n) (12.15)

For n = 3, this is just the sum of the products of the corresponding terms in
columns 2 and 3 in table 12.2.

It is important to note that this last operation does not involve calculating
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each term separately as it would classically. By performing a single calculation,
we have created a linear combination of the results corresponding to all w values
of x . Of course this does not mean that we can recover and use all this information,
because we cannot measure all the properties of a quantum state. Consider,
however, what happens if we measure the state of the n qubits in the y register.
By the measurement postulate, this collapses the whole wavefunction onto the
subset of states corresponding to the eigenvalue obtained. However, because
of the periodic property of f (x), this will not be a single state, but a linear
combination of all the degenerate states in the x register that correspond with
the obtained eigenvalue of the y register. It follows that the numbers represented
by the surviving x-register states have acquired the periodicity of f (x). We now
subject the x register to a unitary Fourier transformation as a result of which
the only non-zero contributions to the superposition are those with i = mw/r ,
where r is the period we are trying to find and m is an unknown integer. We
now measure the state of the x register and obtain a value for i . We perform a
classical calculation to cancel down i/w to get a result which will equal r if m
and r have no common factors. We can then check conventionally whether f does
have period r and, if not, we can run the process again. If the numbers are large,
the chance of m and r having a common factor is small and the likely number of
repetitions needed to obtain the correct answer can be shown to be much less than
ln r .

This example illustrates the enormous potential power of the quantum
computer, the essential feature being the almost miraculous way in which a
superposition of the results of n calculations can be generated by a single
operation. The measurement process limits the amount of this information we can
retrieve, but in an appropriate case such as that described here, incredible results
can be achieved. Before getting carried away, however, we should remember the
immense obstacles that lie in the way of any practical application of these ideas.
Although entangled states of two particles can be generated almost routinely,
extending this to more than a few is difficult, and several hundred or more
really seems impossible. However, there are many examples in the past of the
seemingly impossible being achieved and we should beware of underestimating
human technological capacity. Whether more ‘in principle’ objections may arise
if and when we understand the measurement process better will be speculated on
in the next chapter.

Problems

12.1 Construct a variant of table 12.1 in which Eve makes different guesses about the settings of
Alice’s apparatus.

12.2 Confirm that equation (12.5) is the same as (12.4).

12.3 Construct the equivalent of table 12.2 in the case of a quantum computation based on four two-
state particles.



Chapter 13

The conceptual problems of quantum
mechanics

The previous chapters contain many examples of the successful application of
quantum mechanics to the solution of real physical problems. These represent
only a small sample of the wide range of experimental results, spanning just about
all areas of physics and chemistry and beyond, which have been successfully
explained by quantum theory. So far at least, no quantum-mechanical prediction
has been experimentally falsified. Despite these successes, however, many
scientists have considered the basic conceptual framework of the subject to be
unsatisfactory, and repeated attempts have been made to reinterpret quantum
mechanics, or even replace it with a different theory whose philosophical and
conceptual basis could be considered more acceptable. In the present chapter
we shall explain the reasons for this dissatisfaction and outline some of the re-
interpretations and alternative approaches that have been devised. Inevitably
many of the questions that arise in this area are matters of opinion rather than fact
and for this reason some physicists consider that they belong more properly to the
realms of philosophy than of physics. However, the conceptual basis of quantum
mechanics is so fundamental to our whole understanding of the nature of the
physical universe that it should surely be important for physicists to understand
the nature of the problems involved, if nothing else.1,2

13.1 The conceptual problems

In this section we outline some of the main areas of difficulty with a view to more
detailed discussion later in the chapter.

1 A more extended and less technical discussion of some of these ideas can be found in my book
Quantum Physics: Illusion or Reality (Cambridge University Press, Canto Edition 1994).
2 Some of the ideas in this chapter are also discussed in chapter 12, but the present account is self-
contained.

253
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Determinism

One of the ways in which quantum mechanics differs from classical physics is
that the latter is a deterministic theory, which means that the laws are framed in
such a way that each event can be seen as a necessary consequence of the theory
and the preceding state of affairs. To take a simple example, if we release a
classical object (e.g. a ball) in a vacuum, it will certainly fall to the floor and we
can calculate the time it will take to do so to a very high accuracy—given the
initial position of the object relative to the floor and the acceleration of gravity. In
contrast, a given state of a quantum system generally allows us to predict only the
relative probabilities of different outcomes. For example, if a spin-half particle,
known to be in an eigenstate of Ŝx , enters a Stern–Gerlach apparatus oriented to
measure Ŝz , we know that a positive and a negative result are equally likely, but
which actually occurs is unpredictable.

It is important to realize that, although quantum physics is generally applied
to the microscopic world of atoms and the like, indeterminism can also affect
macroscopic events. Thus, if we have detectors in each channel of the Stern–
Gerlach experiment described earlier, the thing that is uncertain is which of these
will ‘click’ and record the passage of an atom. This counter click is a perfect
macroscopic event and could be used to trigger any other everyday action. For
example, we could decide that if one counter clicked, we would go to work,
while if the other did so we would go back to bed. The possibly earth-shattering
consequences of this decision are then completely indeterminate and cannot be
predicted in advance by any observation we might make on the system before the
experiment is performed.

The indeterminism of quantum mechanics can be traced back to the
measurement postulate (postulate 4.4 in chapter 4) where the procedure for
predicting the relative probabilities of different outcomes of a measurement
is defined. It is important to note that it is here, in the measurement, that
the uncertainty arises. In contrast, the ‘unitary’ evolution of the wavefunction
between measurements is perfectly deterministic. We mean by this that if we
know the wavefunction at any time, we can in principle, and in the absence
of measurement, use the time-dependent Schrödinger equation to calculate its
form at any future time (see chapter 8 and the discussion of the measurement
problem later in this chapter). Referring again to the Stern–Gerlach example,
the wavefunction of a particle that was initially in an Ŝz eigenstate will emerge
from the final Ŝx measurement as a wavepacket that is split into two parts,
corresponding to the two paths that would have been followed by particles
initially in eigenstates of Ŝx . It is only when we ‘measure’ the result of
the experiment by allowing the particle to interact with a counter that the
indeterminacy occurs. At this stage, only one of the two counters actually fires and
the wavefunction becomes that corresponding to the appropriate eigenfunction
of the operator corresponding to the measurement; this process is sometimes
known as the ‘reduction’ or ‘collapse’ of the wavefunction. We are forced to
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conclude that there are two different rules for calculating time dependence in
quantum mechanics: the time-dependent Schrödinger equation which controls
the deterministic evolution of the wavefunction, and the measurement postulate
which produces the random indeterministic results of ‘actual’ measurements.
Defining the boundary between these two processes constitutes the ‘measurement
problem’ in quantum mechanics, to which we shall return in more detail later in
this chapter.

Reality

Fundamentally, the aim of science is to describe nature as it really is. A technical
word for such a description, which we shall use later on, is ‘ontology’. For
example, classical mechanics sets out the laws governing the relations between
the positions and velocities of bodies in motion; these concepts are familiar to us
and can be considered as ‘real’ attributes or properties of the bodies themselves.
When the theory of electromagnetism was developed, the concept of reality was
extended to cover the concept of fields. Although fields are less tangible than
material objects, this idea was very successful in explaining a range of physical
phenomena, including light and electromagnetic radiation, and now we have little
trouble in thinking of classical fields as being part of reality.

Defining reality in the context of quantum mechanics is quite a different
matter. We have emphasized throughout this book that the wavefunction is
not to be considered as physical, but as a mathematical object from which the
possible results of experiments and their relative probabilities can be deduced.
By implication, the experimental results are themselves real; but experiments are
performed on quantum objects, such as electrons, photons etc., and we appear
to be eschewing the possibility of a realistic description of their properties.
Moreover, as we shall see, even the reality of the experiments themselves can
be difficult to maintain in a consistent way.

The first approach to the problem of quantum reality that we shall discuss
consists of efforts made to go beyond the limitations of quantum mechanics and
assign properties to quantum systems independently of their being observed. As
we shall see, these theories give rise to conceptual difficulties of their own.

13.2 Hidden-variable theories

Many of the conceptual problems of quantum mechanics would be resolved
if it could be shown that the predictions of the theory describe probabilities
of actual occurrences, which may not themselves be directly observable. An
analogy can be drawn with classical statistical mechanics where different possible
events are ascribed particular probabilities, even though a detailed examination of
the behaviour of the component atoms would show that these were following
perfectly deterministic laws. If a similar deterministic substructure could be
found to underlie quantum-mechanical indeterminism, this would have many
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attractions. In the quantum case, however, we do not know what the substructure
is or even if it exists at all. For this reason quantities postulated to underlie
quantum behaviour, but which cannot be directly observed, are known as ‘hidden
variables’ and theories based on such ideas are called ‘hidden-variable theories’.

One necessary property of any hidden-variable theory is that it must
reproduce the results of quantum mechanics in every case where these have been
confirmed. Of course, if an as-yet-unperformed experiment could be devised
in which the predictions of the new theory differed from those of quantum
mechanics, then we should be in a position to make an experimental test to decide
which of the two is correct. To date, all such tests have come down on the side
of quantum mechanics, but if the opposite were ever found to be true, it would
constitute one of the most important discoveries of modern physics.

de Broglie–Bohm theory

The earliest example of a hidden-variable theory was that proposed by de Broglie
in 1927 as a direct consequence of his postulate of the existence of matter waves.
This initial work has been developed and extended by a number of other workers
since—notably David Bohm in the 1950s. For this reason it has become known
as de Broglie–Bohm theory.

The basic idea behind de Broglie–Bohm theory is that atomic particles such
as electrons always possess a real position and velocity. The wavefunction or
‘matter wave’ also exists and acts to guide the motion of the particles in such a
way that their statistical properties are just those predicted by quantum mechanics.
We can see how this works if we start from the Schrödinger equation governing
the motion of a particle of mass m in one dimension under the influence of a
potential V (x):

i}
∂ψ

∂ t
= − }

2

2m

∂2ψ

∂x2 + Vψ (13.1)

We define quantities R and S as real functions of x such that

ψ = R exp(i S) (13.2)

If we substitute from (13.2) into (13.1) we get

i}
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exp(i S)+ V R exp(i S)

(13.3)

We now cancel the common factor exp(i S) and separate the real and imaginary
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parts to get two equations:

}
∂S

∂ t
+ }

2

2m

(
∂S

∂x

)2

+ V − }
2

2m R

∂2 R

∂x2 = 0

}
∂R

∂ t
+ }

2

m

∂R

∂x

∂S

∂x
+ }

2

2m
R
∂2S

∂x2
= 0




(13.4)

If we multiply the second of (13.4) by R and rearrange it we get

∂(R2)

∂ t
+ }

m

∂

∂x

(
R2 ∂S

∂x

)
= 0 (13.5)

We can also rewrite the first of (13.4) as
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+ V + Q = 0 (13.6)

where Q is defined by

Q = − }
2

2m R

∂2 R

∂x2
(13.7)

Generalizing (13.5), (13.6) and (13.7) to three dimensions, we get

∂(R2)

∂ t
+ }

m
∇ · (R2∇S) = 0 (13.8)

and

}
∂S

∂ t
+ }

2

2m
(∇S)2 + V + Q = 0 (13.9)

where Q is now given by

Q = − }
2

2m R
∇2 R (13.10)

All we have done so far is to rewrite the Schrödinger equation in terms of
the new functions R and S. However, we can now see how this leads to the
physical ideas underlying de Broglie–Bohm theory. If, as the theory assumes,
there are real particles that always have real positions and real velocities, the
probability distributions for these positions should be subject to the classical
continuity equation. In one dimension this means that the rate of change of the
number of particles in a small region dx equals the net rate of flow of particles
into the region. So, if n(x, t)dx is the number in dx at time t ,

∂n

∂ t
= (nv)x − (nv)x+dx = −∂(nv)

∂x
(13.11)

The three-dimensional equivalent of (13.11) is

∂n

∂ t
= −∇ · (nv) (13.12)
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If we now compare (13.11) and (13.12) with (13.25) and (13.8), we see that they
will be equivalent provided R2 is proportional to n and

v = }∇S/m (13.13)

Because R2 = |ψ|2, the first condition is just the Born postulate relating the
squared modulus of the wavefunction to the position probability density. It
therefore follows that if we postulate that the particle velocity is given by the
relation (13.13), the position probability distribution will evolve in time in exactly
the way predicted by standard quantum mechanics.

To be consistent with quantum measurement theory (where, once a
measurement has been made, the wavefunction corresponds to one of the
eigenfunctions of the measurement operator) the statistical distribution must be
transformed by a measurement into that corresponding with the new |ψ|2. We
note that this means that the eigenfunctions corresponding to the other eigenvalues
will have no particles associated with them. In de Broglie–Bohm theory, such
‘empty waves’ exist, but play no part in determining the future behaviour of the
particles.

Given this expression for the particle velocity, the second and third terms
of (13.9) are now just the kinetic and potential energies of the particle. The
fourth term, Q, however, has no classical analogue; according to de Broglie–
Bohm theory, it is an additional potential known as the ‘quantum potential’. It
is a fundamental feature of the model that the difference between classical and
quantum behaviour is due to this additional term. We can see how this comes
about in the particular case of a conservative system where V is independent
of time. It then follows from the separation of variables in the time-dependent
Schrödinger equation that ∂S/∂ t equals−E/}, where E is the total energy of the
system. Equation (13.9) is then just the classical conservation of energy equation,
with the potential modified by the addition of the quantum potential. It can be
shown that in the more general case where the potential, V , is time-dependent,
(13.9) reduces to what is known as the Hamilton–Jacobi formulation of classical
mechanics.

Although de Broglie–Bohm theory has traditionally been presented in terms
of the quantum potential, more recent work in this area emphasizes the importance
of (13.13) pointing out that all the results can be derived from this without
invoking the idea of the quantum potential. After solving the Schrödinger
equation to get ψ and hence S, we calculate the particle velocity using (13.13).
Given this, we can straightforwardly compute the particle position as a function of
time. Put this way, we can think of }∇S/m as analogous to a force that ‘causes’ a
velocity v. In this sense the ideas are somewhat reminiscent of the pre-Newtonian
theories put forward by Aristotle.

Whichever way we interpret it in detail, de Broglie–Bohm theory seems to
have succeeded. We have a realistic description of the properties of quantum
objects, even when they are not being directly observed. If we include the
quantum potential, we can simply extend the ontology that was developed for
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classical physics into the quantum domain. We shall see later that things are not
as simple as this, but we now proceed to illustrate the strengths of de Broglie–
Bohm theory by considering its application to some examples.

Provided we can solve the Schrödinger equation, it is relatively easy to
calculate the paths followed by the particles numerically. Given an initial position
for the particle, we calculate its velocity using (13.13). This allows us to calculate
the position after a short time dt; the new velocity is then obtained from the
wavefunction at this position and time. This process can be continued until we
have the full ‘trajectory’ followed by the particle, and can be repeated for different
starting positions. We can often get a good idea of the expected behaviour without
doing the full calculation and we are sometimes helped in this by a ‘no-crossing
rule’. This states that the de Broglie–Bohm trajectories can never cross each
other. It follows directly from the fact that the wavefunction, including its phase,
is a single valued, differentiable function of position. However, if the trajectories
were to cross, there would have to be two possible values of v and hence ∇S at
the crossing point.

We first consider the case where V is zero or uniform throughout space. We
know that a solution of the Schrödinger equation in this case is a plane wave
of constant amplitude (see chapters 2 and 3), so it follows from (13.9) that the
quantum potential is constant everywhere. The particle therefore feels no force
and moves with constant velocity, just as we would expect. This result can be
generalized to the case of a ‘wavepacket’ where the wavefunction has the form

ψ(x) = f (x − pt/m) exp[i(p0x − E0t/})] (13.14)

where f (x) is real and E0 = p2
0/2m. The function f is small when its argument

is large, so that the wavepacket has the form of a pulse moving with velocity
p0/m. It follows directly from (13.13) and (13.14) that the particle moves with
the same velocity as the wavepacket so that its position within it does not change.3

We now turn to the case where the particle passes through one or more slits
in a screen. The wave is, of course, diffracted and the solutions to equations (13.8)
and (13.9) have been solved numerically to produce trajectories for the particles in
a number of such cases. An example of the trajectories associated with diffraction
by a double slit is shown in figure 13.1, the starting positions being uniformly
distributed across the slits. The statistical distribution of the particles arriving
some distance from the slits shows the pattern of maxima and minima predicted
by quantum mechanics and observed experimentally. However, the particles have
followed clearly defined paths, just as they would in classical mechanics. We can
therefore tell where a particle has been, though we cannot predict where it will go
any more precisely than the Heisenberg uncertainty principle allows, because we
cannot know in advance which part of which slit it started from.

3 The exact solution of the Schrödinger equation in the case of a wavepacket is more complex as the
various Fourier components evolve differently. However, (13.14) applies in the limit where the width
of the wavepacket is large compared with the de Broglie wavelength, }/p0.
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Figure 13.1. The particle trajectories calculated for double-slit diffraction using the
de Broglie–Bohm hidden-variable theory. The trajectories cluster around the diffraction
maxima in the expected way, as indicated by the Fraunhofer intensity pattern on the right.
(Reproduced by permission from C. Philippides, C. Dewdney and B. J. Hiley, Nuovo
Cimento B 52 15–29 (1970). Copyright Società Italiana di Fisica.)

Figure 13.1 also illustrates the no-crossing rule mentioned earlier. As a
result, all particles observed in the top half of the screen have passed through
the upper slit and vice versa.

We turn now to the case of a particle confined to a potential well. This has
been treated quantum mechanically in chapters 2 and 3, where we see that the
ground-state wavefunction is usually real. It follows that S is zero everywhere in
space so that ∇S = 0 and the speed of the particle as described by de Broglie–
Bohm theory must be zero. Thus in the ground state of a one-electron atom such
as hydrogen the particle must be at rest at some unknown position. More complex
behaviour emerges in states with non-zero orbital angular momentum, when the
complex wavefunction is associated with the particle ‘orbiting’ the nucleus.

Overall then, de Broglie–Bohm theory appears to be so successful that the
reader could be forgiven for wondering why it is not taken to be the orthodox
interpretation of quantum mechanics and why it is not taught from the start,
so avoiding many of the conceptual difficulties associated with the conventional
approach.

Problems with de Broglie–Bohm theory

There are a number of reasons why de Broglie–Bohm theory has not gained
universal acceptance.

First, there is the peculiar nature of the quantum potential itself. Potentials
in physics, both classical and quantum, arise as a result of physical interactions
between objects. For example, the potential experienced by an electron in a
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hydrogen atom is due to the electromagnetic interaction between the negatively
charged electron and the positive proton. But the quantum potential has no
obvious physical basis: it arises purely out of the mathematics of the Schrödinger
equation. Moreover, the forces associated with the theory do not obey Newton’s
third law relating to action and reaction: the wave influences the particle through
the quantum potential, but the particle does not react on the wave.

Second, there are inconsistencies in the de Broglie–Bohm ontology. The
theory began by considering the Schrödinger equation for a charged point particle,
such as an electron. When this is in, say, the ground state of the hydrogen atom,
quantum mechanics describes it as delocalized so that it interacts with another
charged particle as if the charge were spread throughout the atom in proportion to
|ψ|2. The statistical results of de Broglie–Bohm theory averaged over many atoms
are consistent with this but when applied to a single atom, the theory predicts that
the particle is at rest at some unknown point. If the charge were localized at
this point, the atom would possess an electric dipole moment, which could be
measured. Experimentally, the dipole moment is zero, so the charge appears to be
associated with the wavefunction rather than the particle, which contradicts our
starting assumption. Similar arguments can be applied to the gravitational mass
and many other physical properties. The ‘particle’ in de Broglie–Bohm theory
seems to be a largely metaphysical object with no attributes apart from position!

Third, de Broglie–Bohm theory seems to make unnecessary postulates
compared with conventional quantum mechanics. The particle trajectories can
never be observed more accurately than the uncertainty principle allows, so
the postulate that they exist can be seen as an unnecessary extravagance. The
supporters of the theory, however, believe that this extravagance is preferable to
the conventional approach which abjures any realistic description of the behaviour
of quantum objects, and which has to make postulates such as wavefunction
collapse that are unnecessary in de Broglie–Bohm theory.

The fourth and perhaps most important reason why de Broglie–Bohm theory
is not generally accepted is that it is a ‘non-local’ theory. By this, we mean that
a particle may be influenced not only by the potential at the point where the
particle is, but also by its values at other points in space. This is not included
in the formulation set out here, because we have restricted our consideration to
the special case of a single particle moving in a potential V (r). However, if we
extend the argument to the case of two interacting particles, it follows from the
discussion in chapter 10 that the wavefunction, and hence the quantum potential,
are functions of the coordinates of both particles. They therefore do not exist in
real space but in an abstract six-dimensional ‘configuration space’ spanned by the
six coordinates. An appropriate change in the ‘real’ potential V (r1, r2) in the
vicinity of one particle produces an immediate change in the joint wavefunction
and hence the quantum potential affecting the other particle—even though the
latter may be a large distance from the former.

Scientists have always been very reluctant to accept non-locality as part of
a physical theory. The idea of being able to change the behaviour of a system
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some distance away without communicating with it directly and without using
some kind of field to transmit the influence seems more like magic than physics.
Indeed, when Newton first proposed his law of gravitation, he suggested that one
body was able to exert an ‘action at a distance’ on another. This considerably
delayed the general acceptance of Newton’s ideas, and was finally overcome only
when the idea of a gravitational field was proposed which transmitted the force
between the bodies and then acted locally. More recently, the theory of relativity
has shown that all fields capable of transmitting information must do so no faster
than the speed of light, which strengthens our belief in the reality of the classical
field.

If, despite all this, we accept de Broglie–Bohm theory despite its non-
locality, all the results of quantum theory can indeed be reproduced. However,
as we shall see later, serious problems arise when we try to reconcile this non-
local theory with the principles of relativity.

If de Broglie–Bohm theory is not acceptable, might there be another form of
hidden-variable theory that could ‘explain’ quantum mechanics without having
this disadvantage? In the 1950s this question very much interested the quantum
physicist John Bell, who believed that quantum mechanics should have a realistic
substructure and that de Broglie–Bohm theory had been ‘scandalously neglected’.
Ironically, he found that it was impossible for any local hidden-variable theory
ever to reproduce all the results of quantum mechanics. Because this result is so
important and has been so influential over the development of thought in this area,
we devote the next section to a discussion of it.

13.3 Non-locality

The non-local implications of quantum mechanics were first discussed by
A. Einstein, B. Podolski and N. Rosen in a paper published in 1935, and work
in this area is often referred to as the ‘EPR problem’ after the initials of their
surnames. The problem, though not its solution, was greatly clarified by an
illustrative example proposed by David Bohm in the 1960s. This consists of a
pair of spin-half particles, each of which is known to have zero orbital angular
momentum and whose total spin is also known to be zero. Such a system can
be created if a beam of low-energy protons undergoes s-wave scattering from
hydrogen gas; as we saw at the end of chapter 10, the incident and target protons
move apart in a state where the total orbital angular momentum and the total spin
of the pair are both zero. However, the details of how this might be done are
not important, and a system with the same properties that is easier to prepare
consists of two photons in a state where their plane polarizations are mutually
perpendicular—see later. Our discussion will concentrate on the spin case,
although we shall discuss experiments based on the observation of polarization.
However they are created, the particles are allowed to move apart until they are
widely separated. We then measure (say) the z component of spin of one particle
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Figure 13.2. An example of non-locality. A pair of spin-half particles is created in a
state with zero total spin and the spin of each is analysed by a Stern–Gerlach magnet.
Quantum mechanics says that a measurement on one of the particles collapses the whole
wavefunction.

(Ŝz1) and follow this by measuring the same component of the other (Ŝz2) (cf.
figure 13.2). Because the total spin is zero, we might expect equal and opposite
results (± 1

2}), and this is indeed what is observed.
This result is not as obvious as it may appear at first sight. Remember

that when we make a quantum measurement, we cause the system to collapse
randomly into a state corresponding to one of the measurement outcomes. Thus,
measuring the spin of one particle will produce, say, a positive result and a
collapse of its wavefunction. However, if the spin of the other is certain to be
negative, the whole wavefunction must have collapsed, not just the part associated
with the first particle measured. This is indeed what quantum mechanics predicts:
the wavefunction of two particles with opposite spin has the form

ψ(1, 2) = 2−1/2[α(1)β(2)− β(1)α(2)] (13.15)

This expression is independent of the absolute direction represented by α and β

(see the discussion of entanglement in chapter 12). Following standard quantum
measurement theory, if a measurement of the spin of particle 1 yields (say) a
positive result, this will lead to a collapse of the whole wavefunction into the state
α(1)β(2). A subsequent measurement of the spin of particle 2 must then produce
a negative result.

These predictions of quantum mechanics are confirmed experimentally, as
we shall discuss in more detail later, but the non-local implications should
be clear. The two particles may be well separated (by many metres in some
experiments), but a measurement on one of them changes the wavefunction
associated with the other. In fact the second measurement is unnecessary: we
know exactly what its consequences will be as soon as the first measurement has
been made, even though the two particles are widely separated and there is no
known interaction between them.

Consider a classical analogy. If an object with zero angular momentum
splits into two parts and separates, measurement of the angular momentum of
one part tells us that of the other will be equal and opposite. However, in the
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classical case the act of measurement has no effect on the system, while the
opposite is true in the quantum case. It is tempting then to believe that a system
like a spin-half atom is more classical than we had thought and to look for an
explanation similar to the classical description. Such a model would, in fact, be
a local hidden-variable theory (LHVT) because the result of a classical angular
momentum measurement would be determined by the actual angular momentum
carried away by each fragment separately. Can we devise a theory in which the
results of spin measurements would be similarly determined by hidden variables
localized in each spin separately?

Any such LHVT would have to successfully predict the results of any
feasible measurement that could be made on the two-particle system, and not
just the case where the measurement direction is the same on each side. It turns
out that this is not possible, as was proved by John Bell in 1964, and we shall set
out a proof of Bell’s theorem shortly. However, before we can proceed to this, we
will need the quantitative predictions of quantum mechanics for a measurement
of the component of the second spin in a direction at an angle θ to the z axis (Sθ2)

following a measurement of the z component of spin of the first particle (Sz1).
We shall assume that all angular momenta are expressed in units of 1

2} so that the
result of any such measurement is either+1 or−1. In the case where the result of
the first measurement is positive, we conclude that Sz2 is consequently negative
and that the spin part of the wavefunction of this particle can be represented by

the column vector βz =
[

0
1

]
, as in table 6.1. Taking the plane containing the two

spin directions as the xz plane, the eigenvectors of Sθ2 are given in chapter 6 as

αθ =
[

cos(θ/2)
sin(θ/2)

]
and βθ =

[− sin(θ/2)
cos(θ/2)

]

when the eigenvalues are positive and negative respectively. We can now use the
measurement postulate to expand the initial wavevector as a linear combination
of the eigenvectors:[

0
1

]
= sin(θ/2)

[
cos(θ/2)
sin(θ/2)

]
+ cos(θ/2)

[− sin(θ/2)
cos(θ/2)

]
(13.16)

The probability of the result of the second measurement also being positive is
therefore P++(θ) where P++(θ) = sin2(θ/2) and that of it being negative is
P+−(θ) = cos2(θ/2). Similar arguments lead to expressions for the similarly
defined probabilities P−+(θ) and P−−(θ), and we have

P++(θ) = sin2(θ/2)

P+−(θ) = cos2(θ/2)

P−+(θ) = cos2(θ/2)

P−−(θ) = sin2(θ/2)




(13.17)
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Bell’s theorem

Bell’s theorem states that it is impossible for any local hidden-variable theory
(LHVT) to reproduce all the predictions of quantum mechanics.

To prove Bell’s theorem we consider the constraints that any LHVT must
impose on the results of measurements on the spin components of a spin-half
atom, and which can be tested by measurements on entangled pairs of particles,
such as those discussed earlier. According to our LHVT, the result of any spin
measurement is determined in advance by some hidden variable contained in the
particle. We consider the components of spin in three directions (1,2,3) (which
need not be mutually perpendicular). A set of N such atoms will contain a
subset of n(1+, 2+, 3+) particles, each of which would yield a positive result for a
measurement of spin in any of the three directions; n(1+, 2+, 3−) particles where
a measurement in direction 1 or 2 will yield a positive result, with a negative result
if the measurement is made in direction 3 etc. The set of N particles is therefore
composed of eight non-overlapping subsets defined by the signs of the three spin
components. We cannot identify which atom is in which subset, because we can
measure only one spin component on each atom without affecting the others, but
if the LHVT is true all the particles must belong to one or other of the eight
subsets.

Suppose now each atom is one of an entangled pair and we make a
measurement of, say, spin component 1 on one member of each pair and a
different component (say 2) on the other. If the system is subject to a LHVT,
these measurements cannot affect each other. Hence, because the total spin is
zero, a particular result on particle 2 means that we would have obtained the
opposite result on particle 1 for that component. We have therefore found a way
of measuring two spin components on particle 1 while only disturbing it once.
That is, we can measure the number of particles with positive spin in directions 1
and 2; we call this n(1+, 2+), with corresponding quantities for the other possible
signs.

Given this it follows that

n(1+, 2+) = n(1+, 2+, 3+)+ n(1+, 2+, 3−)
n(1+, 3+) = n(1+, 2+, 3+)+ n(1+, 2−, 3+)
n(2−, 3+) = n(1+, 2−, 3−)+ n(1−, 2−, 3+) (13.18)

with similar results for the other five possible measurement outcomes. We note
that, even given a LHVT, it is not possible to measure more than one of the
quantities on the left-hand side of (13.18) on a particular set of N particles.
However, if we use three similarly prepared sets and if N is large, the results
should be the same as we would have obtained if we had made the measurement
on any one of the three sets.

It follows directly from (13.18) that

n(1+, 2+)− n(1+, 3+)+ n(2+, 3−) = n(1+, 2+, 3−)+ n(1−, 2−, 3+)
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Figure 13.3. (a) The measurement directions and the angles between them. (b) The
left-hand side of (13.22) as a function of θ . The fact that it is negative for θ > 60◦
proves Bell’s theorem.

which means that

n(1+, 2+)− n(1+, 3+)+ n(2+, 3−) > 0 (13.19)

This is a version of what is known as Bell’s inequality.
We now compare this result with the predictions of quantum mechanics.

Referring to (13.17), we have n(1+, 2+) = N P+−(θ12) where θ12 is the angle
between directions 1 and 2. Thus, (13.19) becomes

P+−(θ12)− P+−(θ13)+ P++(θ23) > 0 (13.20)

or

cos2 θ12

2
− cos2 θ13

2
+ sin2 θ23

2
> 0 (13.21)

for all possible values of the three angles.
To prove Bell’s theorem we only have to show that (13.21) is false for some

particular values of the angles. We consider the case where all three measurement
directions are in the same plane and in the configuration shown in figure 13.3(a).
In this case, θ12+θ23 = θ13 and we specialize further by putting θ13 = 3θ12 while
writing θ12/2 as θ . This leads directly to

cos2 θ + sin2 2θ − cos2 3θ > 0 (13.22)

This function is plotted in figure 13.3(b) where we see that, although it is positive
for θ greater than about 30◦, it is negative for larger values of the angle. In
particular, for θ = 20◦ the expression has the value−0.22.

We have therefore shown that there is a clear contradiction between the
predictions of any LHVT and those of quantum mechanics, and we have proved
Bell’s theorem.

Example 13.1 A ‘real-spin’ hidden-variable theory As an example of the
application of Bell’s theorem, we consider a particular theory in which we try
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Figure 13.4. According to the ‘real-spin’ hidden-variable theory, the number of particle
pairs where the z component of the spin of the first particle and that of the second particle
in the direction defined by θ are both positive is proportional to the shaded area.

to adapt the classical theory of angular momentum to the quantum situation.
Because this is to be a local theory it is necessarily different from the de Broglie–
Bohm theory discussed earlier. We first postulate that all the components of
angular momentum of a particle always have definite, though unknown, values. It
follows that, as all the components of the total combined spin of the two particles
are zero, the ‘real-spin’ vectors associated with the two individual particles are
equal and opposite and remain so as the particles separate. In quantum mechanics
only one component of spin can be measured without affecting the other two and
we shall assume that this property holds in our model. A further assumption has
to be made concerning the interaction between the ‘real spin’ and the measuring
apparatus if the only possible results of the measurements are to be plus or minus
one (in units of 1

2}): we postulate that if any spin component is ‘really’ positive
(or negative) then a measurement will always yield the result+1 (or−1) whatever
the actual magnitude of the component.

It follows directly from this that, if Sz1 is measured as +1, then the z
component of the second spin must be negative and the ‘real’ spin vector of the
latter must lie somewhere on a hemisphere whose symmetry axis is the negative
z axis (see figure 13.4). Moreover if the component Sθ2 is also positive, the
corresponding true spin must lie somewhere in a hemisphere whose symmetry
axis makes an angle θ with z. Given that the absolute orientation in space of
the two spin vectors is random—provided of course that they are always equal
and opposite to each other—the probability, P++(θ), that both components are
positive is proportional to the volume of overlap of the two hemispheres. We
see from figure 13.4 that this is, in turn, proportional to θ . As we know that
when θ = π the result must be a certainty, that is P++(π) = 1, the constant of
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proportionality must be equal to 1/π . The other probabilities can be estimated in
a similar manner so we have

P++(θ) = θ

π

P+−(θ) = 1− θ

π

P−+(θ) = 1− θ

π

P−−(θ) = θ

π




(13.23)

Substituting these expressions into (13.20) we get

θ13 + θ23 − θ12 > 0 (13.24)

This is true for all possible values of the angles: the left-hand side of (13.24)
is zero when all directions are in the same plane and direction 3 lies between
directions 1 and 2. Thus Bell’s inequality is satisfied. However, the probabilities
clearly differ from the expressions given in (13.17), and our theory does not agree
with quantum mechanics.

Experiments

As quantum mechanics has been so well verified over a wide range of phenomena,
it might be thought that any further experimental test of the discrepancy between
its predictions and those of hidden-variable theories would be unnecessary.
However, it turns out that, because of the particular nature of the correlation
discussed earlier, none of the experiments that had been performed before the
formulation of Bell’s theorem in 1969 provided a direct test of this point. In fact
the form of Bell’s inequality set out here cannot be tested directly as it assumes
that all particle pairs have been detected; while, in any experiment conducted
with real detectors, some particles are always missed. However, other versions of
Bell’s theorem have been derived that are not subject to this criticism. Moreover,
the proofs have been extended to include hidden-variable theories that are not
perfectly deterministic, but include an element of randomness in determining their
predictions.

As previously mentioned, the polarization of a photon follows quantum rules
that are essentially the same as those governing the spin of a spin-half particle:
photon polarization can be measured as being directed parallel or perpendicular to
some direction in space and such measurements follow rules that are identical to
those applying to the measurement of spin as ‘up’ or ‘down’. Some of the earliest
definitive experiments were performed by Alain Aspect in France in the early
1980s and figure 13.5 shows the essentials of his apparatus. Pairs of photons
are emitted from the centre of the apparatus in a quantum state such that the
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Figure 13.5. The Aspect experiment to compare the predictions of quantum mechanics
with those of Bell’s theorem for pairs of polarized photons. The photons can be switched
into either channel on each side, so that measurements can be made with four different
pairs of polarizations. The switches marked S are changed at a rate faster than the time
required to send a signal from one side of the apparatus to the other at the speed of light.

polarizations of the members of each pair are always perpendicular (just as the
spins of the atom pairs discussed earlier are opposite). Each photon is then
directed into one of two polarizers that determines whether its spin is parallel
or perpendicular to some direction. Which polarizer a particular photon enters
is determined by a switch that operates at a frequency of around 108 Hz. The
polarizers are oriented so that one of the left-hand polarizers is set to measure
polarization as either horizontal or vertical (H/V) and the other as either parallel
or perpendicular to a direction at an angle θ to the horizontal, while those on the
right-hand side are set at φ and χ to the horizontal respectively. After a number
of photon pairs have passed through the apparatus, we can determine the number
which have been measured as, say, vertical on the left-hand side and parallel to φ

on the right, which we call n(V , φ+). Other pairs are similarly denoted. Separate
runs are performed in which the left-hand photon is detected with the polarizers
removed on that side and the right-hand photon is detected with its polarization
parallel to θ : the number detected in this way is denoted as n(θ+). The extended
version of Bell’s theorem applicable to this situation is

n(V , φ+)− n(V , χ+)+ n(θ+, φ+)+ n(θ+, χ+) 6 n(θ+)+ n(φ+) (13.25)

It can be shown that the maximum disagreement with the predictions of quantum
mechanics for this set-up occurs when the angles are θ = 45◦, φ = 67.5◦ and
χ = 22.5◦; the left-hand side should be larger than the right by 0.112N , where N
is the total number of photon pairs recorded in each run. The experimental result
in this configuration was 0.101N , which agrees with quantum prediction within
experimental error, but is completely inconsistent with Bell’s theorem.

The Aspect experiment has another property that is of considerable
significance. This is that, because the switches operate at such a high rate, the
time between switchings is considerably shorter than the time needed for light to
travel from one side of the apparatus to the other. Thus, if we were to imagine that
the correlations were established as a result of some unknown physical interaction
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between one side of the apparatus and the other, then this would have to be
propagated faster than light. Overall then, the Aspect experiment seems to provide
conclusive proof that a correct hidden-variable theory must be non-local in nature
and any non-local influence must be propagated through space instantaneously,
or at least at superluminal speed. This is certainly the conclusion drawn by
nearly all workers in the field, but it should be noted that the argument is not
quite rigorous. This is because the proof of the extended Bell’s theorem relies on
several additional assumptions, among which is the apparently reasonable one that
polarizers may attenuate, but can never amplify, light. It has been pointed out that,
because the efficiency of photodetectors is quite low, it is possible to postulate a
breach of this ‘no enhancement’ postulate without implying any overall increase
in the energy of the system, and so to produce a LHVT that is compatible with the
experimental results obtained so far. However, the majority view is that, although
this loophole does exist, it is very small and will eventually be closed when high-
efficiency photo-detectors are developed.

In the twenty or so years since the Aspect experiment, Bell’s theorem (with
the additional assumptions mentioned above) has been re-tested in a number
of experimental situations. By the end of the twentieth century, EPR-type
correlations had been observed between pairs of photons separated by several
kilometres, experiments had been performed with random switching of the
outputs (in contrast to the periodic switching used in the Aspect experiment)
as well as on photon triplets. In every case, the quantum predictions were
confirmed within experimental error and some form of Bell’s inequality was
clearly breached.

An important feature of all correlations between separated photons is that
they cannot be used by themselves to transmit information—i.e. signalling is
forbidden. To see this, imagine observing the results of measurements made on
one side of an apparatus such as that shown in figure 13.2. The spin would be
found to be positive or negative at random, whatever the setting of the apparatus
on the other side. Thus there is no way for an experimenter on one side to signal
to the other merely by changing the orientation of her apparatus. It is only when
the records of the two sets of observations are brought together and compared
that the correlations are manifested. Thus, EPR non-locality does not breach the
fundamental principles of relativity.

Accepting that Bell’s theorem and the Aspect experiment rule out LHVTs,
we now discuss how non-local de Broglie–Bohm theory models the case of
entangled spin-half particles. When the two particles emerge from the source,
they are represented by wavepackets, associated with each of which is a Bohm
particle. The rule requiring the statistical distribution of Bohm particles to be
|ψ|2 ensures that the positions of the particles within the wavepackets are not
correlated with the spin directions. What happens in a spin measurement is that,
as a wavepacket passes through a Stern–Gerlach (SG) apparatus, it splits into two
components with opposite spin. Only one of these contains the Bohm particle,
which is subsequently detected.
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Figure 13.6. (a) A pair of wavepackets (open circles) containing Bohm particles (filled
circles) in their upper halves are split by Stern–Gerlach magnets oriented to measure the z
component of spin. The figure shows the positions of the packets and particles at several
stages of evolution. (b) The unbroken lines illustrate the same process in the z1/z2 plane
of the two-particle configuration space, while the broken lines show what would happen if
the right-hand magnet were the closest to the source.

Returning to the two-particle case, we will assume for simplicity that the
same (z) component of spin is measured in each half of the apparatus (see
figure 13.6(a)). To agree with quantum mechanics and experiment, the left-
and right-hand Bohm particles must end up in opposite component packets. It
is helpful to represent the motion of the two particles by that of a single point
in the six-dimensional ‘configuration space’ defined by the coordinates of the
two particles. As the wavefunction is a function of all these coordinates (cf.
chapter 8) it must be a differentiable single-valued function of all of them, and
the de Broglie–Bohm no-crossing rule holds in configuration space. We are
primarily interested in motion in the z direction as defined in figure 13.6(a), and
the projection of configuration space onto the two-dimensional plane defined by
z1 and z2 is shown in figure 13.6(b). Remembering that the particles are randomly
distributed with a probability distribution |ψ|2, around 25% of the pairs will
have both Bohm particles in the top (i.e. z > 0) halves of their wavepackets.
This corresponds to the representative points in configuration space being in the
top right-hand quadrant of the wavepacket—represented by the circle near the
origin of figure 13.6(b). We first consider the case (represented by continuous
lines in figure 13.6(b)) where the left-hand SG apparatus is nearer the source of
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the particles than the right-hand one. As the wavepacket interacts with the left-
hand apparatus, it splits into two and the Bohm particle joins the upward moving
packet. When the right-hand SG is reached (points A and A′ in configuration
space) the correlation between the spin directions ensures that the wavepackets
move to the points B and B′. We note that the Bohm particle can follow the
wavepacket from A to B, despite being on the ‘wrong’ side of the wavepacket,
without violating the no-crossing rule in configuration space. When the Bohm
particles are subsequently detected, we conclude that the left- and right-hand spins
are positive and negative respectively.

Suppose, now, that we had made the measurement on the right before that
on the left. The configuration-space point would have followed the route OC′ D′
and we would have concluded that the left- and right-hand spins were negative
and positive respectively—directly opposite to the previous result. In both cases,
provided we start with the particles randomly oriented in the wavepackets, the
statistical outcome would be the same and would agree with quantum-mechanical
predictions.

The purpose of de Broglie–Bohm theory is not only to predict results that we
can just as well calculate by quantum mechanics, but also to provide a realistic
ontology. The Bohm particles are supposed to be ‘really there’! Now remember
that the Aspect experiment has shown that spin correlations persist even when the
time between the measurements is less than the time for light to travel across the
apparatus. However, in such a case the theory of relativity allows us to reverse
the time ordering of events simply by observing them from an inertial frame that
is moving relative to the laboratory. It follows that the destinations of the Bohm
particles seem to depend on which frame of reference we make our observations
in!

However, there can only be one measurement outcome and this must be the
same for both observers. The only things that might differ are the conclusions
the observers reach about the properties of the Bohm particle. The observer who
sees, say, the positive result on particle 1 first, concludes that this particle must be
somewhere in the upper half of its wavepacket. In contrast, the observer who sees
the negative result on particle 2 first, concludes that this particle is in the lower
half of its wavepacket. Nevertheless, we have shown that the theory requires there
to be some pairs in which both particles are in the upper halves. We can resolve
all this if we are prepared to accept that a description of reality, as reflected in
the particle positions, is relative to the observer, but this greatly weakens the
objectivity that the theory was supposed to provide. Alternatively, the theory
of relativity might not apply to the motion of the Bohm particle, which occurs
in some privileged frame of reference such that time ordering is the same for all
observers. A third possibility is that counters do not detect Bohm particles, but
are activated by the wavefunction, even if it is ‘empty’, but then the main gain of
Bohm theory, which was to provide a deterministic ontological substructure for
quantum measurements, would be lost.

Combined with the problems of non-locality and the criticisms set out earlier,
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these arguments must cast considerable doubt on the correctness and ontological
usefulness of the Bohm model.

If we reject non-local theories such as that of de Broglie–Bohm, what is the
alternative? One possibility would be to look for another hidden-variable theory
that was not subject to the criticisms set out above. Alternatively we could return
to quantum mechanics and look again at the standard interpretation. An important
feature of this is that properties which, in principle, cannot be measured in a
particular experimental situation do not have any real existence. Thus, if we pass
a spin-half particle through a Stern–Gerlach apparatus oriented to measure Ŝz ,
then the other spin components are not just unmeasurable but have no reality. The
traditional, ‘Copenhagen’, interpretation of quantum mechanics, propounded by
Niels Bohr in particular, assigns physical properties not to individual quantum
systems on their own, but to quantum systems in conjunction with measuring
apparatus; the only physical properties that are real in this situation are those that
can be measured by the apparatus. The proof of Bell’s theorem then fails because
the unmeasured spin components do not have values that are functions of the
hidden variables: they just do not exist. Clearly, however, such an interpretation
of quantum mechanics implies that we know what a measurement is, and this
brings us back to the measurement problem.

13.4 The quantum-mechanical measurement problem

Probably the most difficult and controversial conceptual problem in quantum
mechanics concerns the nature and meaning of the quantum theory of
measurement described in chapter 4. The relevant theory is contained in
postulates 4.2, 4.3 and 4.4 which state that the measurement of a physical
quantity always produces a result equal to one of the eigenvalues (qn) of the
operator (Q̂) representing that quantity; that the wavefunction immediately after
the measurement is the same as the corresponding eigenfunction (φn); and that,
if the wavefunction is ψ before the measurement, the probability of obtaining the
result qn is equal to |cn|2 where ψ = �ncnφn . The effect of the measurement is
therefore to cause the wavefunction to be changed from ψ to φn . We can represent
this process by

ψ −→
measurement

giving
result qn

φn (13.26)

This process is known as the ‘reduction’ or ‘collapse’ of the wavefunction. It
is fundamentally a ‘stochastic’ process which means that the actual outcome is
unpredictable, although the statistical properties of a large number of similar
experiments can be calculated.

In contrast, postulate 5 states that the evolution of the wavefunction between
measurements is governed by the time-dependent Schrödinger equation

i}
∂�

∂ t
= Ĥ� (13.27)
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This is a linear equation, which means that the wavefunction at time t is entirely
determined by the wavefunction at t = 0, along with the Hamiltonian Ĥ , and
there is no randomness. Thus, there are two different time dependencies in
quantum mechanics: ‘unitary evolution’ under the action of the time-dependent
Schrödinger equation and ‘collapse’ associated with a measurement. Although it
is always easy in practice to decide which process occurs in any particular case,
defining objective criteria for this is much more difficult.

To look more closely at what constitutes a measurement we consider once
again the example of the measurement of a component of spin of a spin-half
particle using an SG apparatus. If the component to be measured is Sz , whose
eigenvalues are± 1

2} and whose eigenvectors are represented by αz and βz , and if
the initial spin state of the particle is αx , (13.26) becomes

αx = 1√
2
(αz + βz) −→

measurement
yielding
Sz= 1

2}

αz

αx = 1√
2
(αz + βz) −→

measurement
yielding
Sz=− 1

2}

βz




(13.28)

It is important to note that this measurement, and the subsequent collapse of
the wavefunction, are not achieved simply by passing the particles through an
appropriately oriented SG magnet. This follows from a consideration of the
arrangement illustrated in figure 13.6 where particles with a known Sx are passed
through such a magnet oriented to ‘measure’ Sz and then directed back into a
common path. Provided their path lengths are carefully controlled, the waves
associated with the two paths interfere to re-construct the initial wavefunction.
This is possible because no information has been obtained about the value of
Sz . Thus, the wavefunction has not collapsed and its spin part is still αx after
the process. It follows that, in order to make successful measurements of Sz ,
some detecting device or counter must be introduced to record through which
channel the particles passed. It is the presence of such recording apparatus which
apparently causes the reduction of the wavefunction described by (13.26) and
(13.28).

The description of the quantum theory of measurement in the previous
paragraph would be perfectly correct and sufficient, provided we could treat the
recording equipment as a separate piece of apparatus obeying the laws of classical
physics. However, quantum mechanics is believed to be a universal theory,
capable of describing macroscopic as well as microscopic objects, so why should
we not be able to treat the whole set up, including the detector, as a quantum
system subject to the time-dependent Schrödinger equation? Let us see what
happens if we do. We again consider the measurement of Ŝz described earlier, but
now assume that the passage of the particle through the positive channel of the SG
magnet is recorded by some detector, and that this detector can itself be described
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Figure 13.7. Spin-half particles with positive x component of spin pass through an SGZ
apparatus and are then directed along a common path into an SGX without any record
of their z component having been made. A further measurement of their x component
invariably produces a positive result.

by a wavefunction which can take one of two forms: χ0 before the particle is
detected and χ+ if Sz = 1

2}.
We consider first the case where the initial spin state of the particle is

represented by αz ; the total wavefunction of the whole system consisting of
particle and measuring apparatus is then

ψ0 = αzχ0 (13.29)

After the particle has passed, χ0 will be changed to χ+ and the total wavefunction
becomes

ψ+ = αzχ+ (13.30)

However, if the initial state of the particle is βz nothing is detected and the total
wavefunction is still

ψ0 = βzχ0 (13.31)

What we really want to know is what happens when the particle is not in an
eigenstate of Ŝz before the measurement, but has a wavefunction whose spin part
is, say, αx . The initial state of the whole system, particle-plus-detector, is then

ψ0 = αxχ0 = 1√
2
(αz + βz)χ0 (13.32)

Now, if the time evolution of the wavefunction is governed by the time-dependent
Schrödinger equation, each term on the right-hand side of (13.32) evolves in
exactly the same way as it does when the initial wavefunction is the appropriate
eigenfunction of Ŝz . Hence, using (13.30), (13.31) and (13.32), we find that the
total wavefunction after the measurement is

ψ = 1√
2
(αzχ+ + βzχ0) (13.33)

States like the right-hand side of (13.33) are called ‘entangled’ states because
the spin and counter states are entangled together in a linear combination. As
we might have expected, (13.33) contradicts (13.28) which implies that the
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wavefunction should have collapsed into either αzχ+ or βzχ0 as a result of the
measurement. Thus, if the detector were to contain a pointer that could occupy
one of two positions depending on which of these states it was in, then (13.33)
would imply that the pointer was somehow delocalized between two positions.
Although predicted by quantum mechanics, it would seem quite contrary to our
everyday experience if classical macroscopic objects such as detectors were to be
in such a state.

We might try to resolve the problem by postulating that no collapse occurs
until a measurement is made on the whole quantum system, particle-plus-detector.
We could then use further apparatus to measure its state, when its wavefunction
might collapse to αzχ+ or βzχ0, depending on the result of this measurement.
But this new measuring device could of course be considered as part of an even
larger system which would then be isolated and whose wavefunction would again
have a form similar to that of (13.33). There is therefore a potentially infinite
chain of measurements and there would seem to be no point at which we can
unambiguously state that the wavefunction has collapsed.

Schrödinger’s cat

The apparently paradoxical results discussed earlier are vividly illustrated by an
example first discussed by Schrödinger in the early days of the subject. In this
thought experiment, Schrödinger imagined the result of a quantum-mechanical
measurement (such as obtaining the value 1

2} from a measurement of Sz on a
particle whose initial state was αx ) being used to fire a gun (or trigger some other
lethal device) in the direction of an unfortunate cat which is consequently killed.
If, however, the result is − 1

2}, the gun is not fired and the cat remains alive.
The whole apparatus is enclosed in a box, which is opened at a later time when
the state of the cat (live or dead) is examined, from which observation the value
of Sz can be deduced. By analogy with the earlier discussion, the time-dependent
Schrödinger equation predicts that the wavefunction of the box and all its contents
will be given by (13.33) where χ+ and χ0 now describe the whole apparatus (apart
from the particle, but including the cat) when the cat is alive and dead respectively.
But this would imply that before the box is opened the state of the cat is neither
alive nor dead! If we reject this apparently absurd conclusion we must ask at what
point the wavefunction collapses: is it when the particle enters the magnet (clearly
not for reasons given here), when the gun fires, when the cat dies or when?

Decoherence

There is one important difference between a state described by a linear
combination of spins as in (13.28) and a similar linear combination involving
macroscopic measurement apparatus such as (13.33). Essentially this lies in
the complexity of the many-body wavefunction representing a macroscopic
object such as a measuring apparatus or a cat. This which ensures that it
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is, in practice, completely impossible to perform an interference experiment to
reconstruct the state αxχ0 from the linear combination 2−1/2(αzχ+ + βzχ0). If
such a reconstruction is impossible, the results of all subsequent measurements
will be the same as they would be if the system had ‘really’ collapsed into
an eigenstate after the particle has been detected. The process whereby the
macroscopic systems evolve into a state where interference is for all practical
purposes forbidden is known as decoherence.

To see in more detail how decoherence works, we use a slightly generalized
form of (13.33)

ψ = Aαzχ+ + Bβzχ0 (13.34)

We assume the χs are normalized and that |A|2 + |B|2 = 1. Consider the
statistical results of a large number N of identical SGZ measurements, including
appropriate recording apparatus, whose wavefunctions have the form (13.34).
Such a collection of identical experiments is known as an ensemble and the
Schrödinger equation predicts that, after the measurement, the ensemble will be
in a so-called ‘pure state’. In contrast, consider the case of N particles where
N |A|2 are known from the start to be in the state α while N |B|2 are in the state
β. Such an ensemble is known as a mixture and, in this case, measurements of Ŝz

simply reveal properties the particles already possess. In the context of ensembles,
therefore, collapse corresponds to a transition from a pure state to a mixture.

How could we find whether a given ensemble is in a pure or a mixed state?
Consider an operator Q̂ which represents some physical operation on the whole
system of particle-plus-measuring apparatus. If this is in a pure state and the
wavefunction has the form (13.34), the expectation value of Q̂ will be given by
〈Q̂〉 where

〈Q̂〉 =
∫

(A∗α∗z χ∗+ + B∗β∗z χ∗0 )Q̂(Aαzχ+ + Bβzχ0) dτ (13.35)

and the 1020 or so variables required to describe the state of the particle and
measuring apparatus are all assumed to be included in the volume element dτ .
Multiplying out (13.35) we get

〈Q̂〉 = |A|2 Q++ + |B|2Q00 + A∗B Q+0 + AB∗Q0+ (13.36)

where

Q++ =
∫

α∗z χ∗+ Q̂αzχ+ dτ etc.

In the case of the mixed state, 〈Q̂〉 is the weighted mean of the expectation
values corresponding to the states αzχ+ and βzχ0. That is

〈Q̂〉 = |A|2 Q++ + |B|2Q00 (13.37)

Comparison of (13.36) and (13.37) shows that these two results would be
identical if Q+0 = Q0+ = 0; so, for this to be true when Q̂ is any physical
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operator, the mixed state and the pure state would be indistinguishable. Let us see
how this might come about. One of the key features of any practical measurement
is that there is an irreversible change in the measuring apparatus at some point.
Thus when the counter clicks or the grain in the photographic emulsion blackens,
an irreversible change occurs, accompanied by an increase in the entropy of the
universe. By irreversible we mean that we cannot restore the initial state by any
practical procedure. We note first that |Q+0|2 is proportional to the probability
that a transition will take place between the states χ+ and χ0 under the influence of
the operator Q̂. But this would amount to returning the detector to the state it was
in before the particle was detected, which would mean reversing an irreversible
change! We might be able to do this by operating from outside the system, but
this would increase the entropy of some other part of the universe, which would,
in turn, become entangled with the system.

Decoherence has been closely studied in recent years. Some of this has been
directed at the investigation of how quickly terms of the form Q+0 go to zero
during a measurement. Models of measurement processes have been set up and
in typical cases Q+0 decays to an incredibly small value in a very short time—
typically around 10−1035

after 10−6 seconds.
We can therefore conclude that, once decoherence has occurred, the

statistical predictions for the properties of pure and mixed states are essentially
identical. So has this solved the measurement problem? Yes, for all practical
purposes, but we should have expected that. When Schrödinger posed the
problem of his cat, he knew perfectly well that it would be completely impractical
to recreate the initial state by some interference experiment. All decoherence
really does is justify the practical theory of measurement that we started with,
and most, if not all, points of principle remain unresolved. One of these is that,
however improbable, there is always a theoretical possibility of a spontaneous
reversal of an irreversible change. Perhaps more important is the fact that
decoherence says nothing about collapse. The probabilities of obtaining various
outcomes form just one feature of the measurement process. The other part
of the postulate states that the wavefunction collapses into the eigenfunction
corresponding to the result. This is no problem in the case of a mixture because
the atoms are already in one or other of the eigenstates before the measurement
is made: the measurement just has to tell us which particle is in which state.
But in the general case discussed earlier, collapse means that the wavefunction
must change in a way that is inconsistent with the time-dependent Schrödinger
equation. To model collapse, not only must Q+0 and Q0+ vanish, but so must
one or other of A and B at random. In practice, we assume this has happened
after a measurement, but it is not included in the formalism. This is sometimes
expressed by saying that collapse must be added ‘by hand’.

Summarizing, there are two processes associated with measurement:
decoherence and collapse and we still have not explained why collapse occurs.
We will now discuss some of the ways in which this has been explored further.
We define the collapse time as the time between the formation of a state such as
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(13.34) and its collapse into one of its components, and we consider the relation
between the collapse time and the decoherence time in various scenarios.

Many worlds

We first consider the possibility that the collapse time is infinite—i.e. collapse
does not occur at all. At first sight, this seems to contradict everything we have
just said about the importance of the collapse process. However, let us put aside
this prejudice and consider what the universe would be like if there really were
no collapse. Once decoherence has occurred and produced a state like (13.34),
the whole system has been divided into ‘branches’, one of which corresponds to
each possible measurement outcome. The key point is that not only can the initial
state not be reconstructed, but there is also no way that the different branches can
interfere with each other. Each branch evolves independently of the others, and
as far as it is concerned, its future behaviour is just the same as if collapse had
occurred and the other branches had disappeared. Another way of putting this is
to ask how we could know that a particle is split into two delocalized halves as in
the output of a SG apparatus. Any measurement we make on such a state simply
entangles the apparatus with the particle to create a state of the form (13.34).
The only way we know that the delocalized state ever existed is to perform
an interference experiment, such as that illustrated in figure 13.7. Once this is
impossible because of decoherence, the branches evolve quite independently and
unaware of each other’s existence.

These ideas, which were first put forward by H. Everett in the 1950s, involve
a huge ontological cost. Not only does the apparatus branch, but so also does
everything that interacts with it in the future—including human observers! As a
result of looking at the counter I am split into two. One of me believes that the
particle has been detected while the other thinks it has not, and my two selves can
never communicate with each other to resolve their disagreement. Hence the term
‘many worlds’. Every time an irreversible change occurs anywhere, the universe
branches, so that there are now an unimaginably huge number of parallel ‘worlds’.
Many of these worlds will have appeared before human life evolved, but others
will contain nearly identical copies of us.

Many-worlds theory addresses many of the problems associated with the
quantum theory of measurement, but it does so in a particularly uneconomical
manner. There is a fundamental postulate in science known as ‘Occam’s razor’
which states that no theory should contain more postulates than are necessary to
explain the observed facts. The idea of a near-infinite number of universes which
can never interact with each other and whose existence can therefore never be
verified seems to be an extreme breach of this principle. Nevertheless, this idea is
taken seriously by some serious people and at least deserves further consideration
of its merits.

First, many-worlds theory is a single theory. There is only the wavefunction
governed by the Schrödinger equation and there is no need for collapse. Occam’s
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razor is only useful if we can agree on which assumptions we would most readily
object to; some believe that many-worlds theory has an ‘economy of postulates’
that makes it preferable despite its ‘extravagance with universes’.

Second, because the wavefunction does not collapse, the problems of non-
locality discussed earlier do not arise. It is the act of measuring the state
of one of the particles in an EPR experiment that causes the collapse of the
wavefunction representing the other. If no collapse occurs, there is no change
and no problem.

Third, it was a believer in many-worlds theory (David Deutsch) who was
one of the first and main proponents of the possibility of quantum computing.
As outlined in chapter 12, there are some calculations that would be carried out
with enormous efficiency if a computer could be built that operated in reversible
manner on the basis of unitary evolution. From a many-worlds point of view
this gain arises from the possibility of carrying out a huge number of parallel
calculations in different branches.

Fourth, a no-collapse theory is attractive to many of those interested in
quantum cosmology. If we are to describe the whole universe by a wavefunction
(as is done by those studying the very early stages of the big bang) it makes little
sense to talk about an ensemble. The advantages of a single theory based on a
wavefunction governed by the Schrödinger equation are particularly evident in
this case.

However, many-worlds theory is subject to a major problem—quite apart
from its ontological extravagance. This is the question of how we can talk
about the probabilities of events when all possible outcomes actually occur. If
a particle’s spin is either up or down, it makes sense to attribute a probability to
each outcome, and we can verify this by making measurements on a large number
of systems and counting the fraction of the total in each. However, if the spin is
simultaneously up and down and if there are separate copies of us associated
with each possibility, what does probability mean? This question is particularly
acute when we realize that the probabilities postulated in quantum mechanics are
not related to the number of branches associated with each outcome. Thus, two
branches evolve from a wavefunction such as (13.34) whatever the values of A
and B (provided neither is zero), but the measurement postulate and experiment
show that the probabilities are |A|2 and |B|2 respectively. A classical analogy is a
flowing stream that splits into two parts of different size (figure 13.8). There may
be more water going down one of the channels, but it is meaningless to say that the
water is more likely to be in that channel, as it is actually in both. However, if we
scatter floating objects in the stream, upstream from the division, we can say that
they are more likely to be carried into one stream than the other. The equivalent
of the floating object in quantum mechanics might be a Bohm particle (see earlier
in this chapter), in which case probability is well defined. Indeed, the de Broglie–
Bohm model can be thought of as a many-worlds theory, as both assume that the
wavefunction follows the Schrödinger equation without collapsing. The rôle of
the Bohm particle is then to pick out one of the branches as representing ‘reality’.
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Figure 13.8. Water flowing along a stream divides into two channels. If small floating
objects are scattered randomly onto the water above the splitting point, they will be more
probably found in the wider channel. However, it is meaningless to say that the water is
more probably in one channel or the other as it is actually in both. By analogy, probabilities
can be straightforwardly assigned to particle properties in de Broglie–Bohm theory, but not
to ‘worlds’ in many-worlds theory.

However, as we showed earlier, de Broglie–Bohm theory has serious problems of
its own.

The problem of probabilities has been realized ever since many-worlds
theory was invented and several workers in the field, beginning with Everett
himself, have attempted to resolve it. However, no such proposal has yet
commanded general acceptance, and the problem remains a substantial obstacle
to believing in what is, anyway, a remarkably radical idea.

Spontaneous collapse

A completely different approach to the quantum measurement problem is to
seek to modify the time-dependent Schrödinger equation in such a way that
its solutions ‘spontaneously’ collapse into the expected states in appropriate
circumstances. There would then be only one law governing time dependence and
most of the problems would have disappeared. Thus objects such as counters and
cats would be predicted to behave classically, while electrons or other microscopic
particles would exhibit properties such as interference.

As we previously pointed out, the Schrödinger equation itself is a linear
equation whose solutions describe the unitary evolution of the wavefunction,
which forbids collapse. To include collapse, it must be modified by making it
nonlinear—e.g. by including terms proportional to ψ2 and/or higher powers of
ψ . It can be shown that modifications of this type can be devised that will lead
to collapse after some time, known as the ‘collapse time’. Some of the earlier
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Figure 13.9. According to GRW theory, there is a finite probability of a particle collapsing
into a localized state at any time. A macroscopic body is delocalized (picture on left) when
one of the atoms collapses so that one of its possible positions is left empty, while the other
is ‘over-full’ (central picture). To avoid the inevitable increase in energy, the whole object
must collapse around the atom (picture on right).

suggestions for the form of such extra terms led to predictions about the behaviour
of neutron beams that were tested experimentally and not observed. In general,
a number of conditions must be fulfilled if any such theory is to predict collapse
and be consistent with the known behaviour of quantum systems.

First, the collapse time must not be too short. Otherwise it would prevent
interference between states that had been spatially separated for a longer time.
Experiments performed on slow neutron beams have tested interference when
the beams have been separated for the order of milliseconds with no sign of any
spontaneous collapse.

Second, the collapse time must not be too long. As we have seen, when it
is infinite, we essentially have a many-worlds theory. It follows that to avoid the
problem of probabilities, collapse into one alternative or the other must happen
sometime during the time taken to perform the measurement.

Third, collapse should occur in ‘measurement-like’ situations. That is, after
the system has become coupled to some macroscopic apparatus, such as a pointer.

For some time it was believed that a spontaneous-collapse theory meeting
these conditions was not possible. But a breakthrough in this area was achieved
in the 1980s with the development of what has become known as ‘GRW theory’
after the initials of its three main protagonists.4 This is based on the idea that
the spontaneous collapse of a single particle contained in a macroscopic object
necessitates the collapse of the whole. To understand this, imagine an object
such as a pointer in a state where it is delocalized between two widely separated
positions—i.e. a state such as (13.34) where χ1 and χ2 occupy different regions
in space (cf. figure 13.9). Now suppose that the modified Schrödinger equation
causes one of the atoms in the pointer to become spontaneously localized in a
narrow region around some position in one region (say that occupied by χ1); it
therefore disappears from the corresponding region in the other. If nothing else

4 G. C. Ghiradi, A. Rimini and T. Weber.
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happened, the state would be a superposition of a complete pointer with an over-
weighted atom in one position along with one containing a missing atom in the
other. However, the energy of this state would be increased by the energy required
to create such hole. The only way that this can be avoided is if the whole pointer
collapses along with the atom so that its wavefunction becomes χ1, which is just
what we are looking for.

A great strength of this idea is that it allows the collapse time for an isolated
particle to be so long that it would be extremely unlikely ever to be observed,
while ensuring that one of the many particles in the pointer would collapse in
quite a short time. For example, if the collapse time for a single particle were to
be around 105 years, the state of a pointer containing 1020 atoms would collapse
in about 10−8 seconds. These principles have been developed into a mathematical
theory and parameters can indeed be chosen that make it consistent with all
presently performed experiments

There is a penalty to be paid for adopting a spontaneous-collapse model.
This is that two new constants have to be postulated: the collapse time and a length
specifying the size of the wavefunction after collapse. If these are fundamental
constants, then the whole of physics is made more complicated and Occam’s
razor would encourage us to reject this unless it were supported by compelling
experimental evidence.

To obtain positive evidence for spontaneous collapse, we would need
to perform an experiment on a macroscopic body that would demonstrate
interference if unitary evolution held, but not if collapse occurred. This means
that we would have to delay the onset of decoherence by isolating the system
from its environment. This is generally very difficult; for example, unless great
care is taken to ensure that the two possible paths through an SG apparatus are
kept constant to a high degree of accuracy (within about 10−6 m) the original
spin function will not be reconstructed and the results of the experiment will be
indistinguishable from one where the particles pass along one or other of the two
possible paths without ever being delocalized. In fact the interference experiment
illustrated in figure 13.5 has never been carried out with atoms, although the
analogous experiment on polarized photons is relatively straightforward. Up to
the end of the twentieth century, the largest objects shown to produce interference
patterns after being passed through slits were Buckminster fullerene molecules—
spherical molecules made up of 60 carbon atoms, which are many orders
of magnitude too small for GRW collapse to apply. It was pointed out by
A. J. Leggett in the late 1970s that, as the magnetic flux in superconducting
quantum interference devices (SQUIDS) is associated with the collective coherent
motion of a macroscopic number of electrons, an observation of quantum
interference involving this quantity would show that quantum mechanics is
applicable to a macroscopic object in this context at least. After two decades
of experimental effort, nearly all quantum predictions for such systems have
been checked and no evidence of collapse has been found. In late 2001, two
samples of caesium atoms, each containing about 1012 atoms were maintained
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in an entangled state for about 10−3 seconds before decoherence set in, and no
collapse was detected. It is possible to choose values for the parameters of GRW
theory so as to ensure that it is not falsified by any of these experiments, but
most people will remain to be convinced unless and until collapse is observed in
a situation where decoherence is forbidden.

Gravity

Apart perhaps from quantum mechanics itself, the greatest theory of modern
physics is Einstein’s general theory of relativity. This has successfully united a
model of space and time with gravity to provide a consistent picture of the large-
scale structure of the universe and its evolution from the big bang. The predictions
of general relativity have been thoroughly tested and verified by a number of
detailed astronomical measurements. However, major problems arise when we
try to unite gravity with quantum mechanics. This is because the relativistic view
of space–time and its curvature in gravitational fields is essentially incompatible
with the linearity of quantum theory. It is generally believed that significant
problems could only arise in situations where the gravitational fields are typically
as strong as those believed to exist in the neighbourhood of a black hole—
i.e. immensely stronger than anything experienced on earth. However, the
cosmologist Roger Penrose has speculated that it may be the very weak residual
effects of quantum gravity that cause the collapse of the wavefunction when the
system is in a macroscopically delocalized state. This could conceivably provide
a mechanism for GRW collapse, but will remain a speculation unless and until
a full theory of quantum gravity is developed that contains this result, as well as
others that can be tested experimentally.

The Copenhagen interpretation

We return now to what is generally accepted to be the conventional interpretation
of the quantum theory of measurement. This was developed by Niels Bohr and
co-workers in Copenhagen and is consequently referred to as the Copenhagen
interpretation. There are several key ideas associated with this view.

First, the wavefunction has no counterpart ‘in reality’. It is a purely
mathematical object that enables us to make statistical predictions about the
results of experiments.

Second, it is always incorrect to consider the quantum-mechanical system
as separate from the measuring apparatus. If we call the set of eigenfunctions
used to represent a state a basis, then any two orthogonal spin eigenfunctions—
e.g. αz and βz or αx and βx—can be used as a basis for a given spin state. The
Copenhagen interpretation states that the appropriate basis to use is determined by
the details of the experimental arrangement. Thus a spin-half particle approaching
an SGZ apparatus (including an appropriate counter) should be referred to αz

and βz , while that consisting of a similar particle approaching an SGX must be
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represented by αx and βx . If we remove the counter and bring the two paths
together as in figure 13.6, we change the experimental set-up, and we should
therefore not be surprised that the spin part of the wavefunction is αx , rather than
αz or βz . This aspect of the Copenhagen interpretation provides an alternative
way of looking at the properties of entangled pairs of particles (see earlier in
this chapter). Before a measurement, such a pair is a single quantum system
whose properties cannot be accounted for in terms of the separate properties of
the individual particles. Once we choose which spin directions to measure on
each side, we define the appropriate basis for each particle. Because there is no
reality in the absence of measurement, the arguments leading to Bell’s inequality
cannot be applied. These ideas were expressed by Neils Bohr when he said that
the apparently non-local interactions were confined to ‘an influence on the very
conditions that define the possible types of prediction’ that can be made.

Another important idea associated with the Copenhagen interpretation
is that of complementarity. From this point of view some properties (e.g.
position and momentum, x and z components of angular momentum, etc.) form
complementary pairs, and it is an intrinsic property of nature that any attempt to
define one of these variables precisely must lead to a complementary uncertainty
in the other. For example, if a spin-half particle is in an eigenstate of Sx , to ask
whether its spin is parallel or antiparallel to the z axis is clearly meaningless. In
the same way, a proper understanding of quantum mechanics would imply that
the question ‘what is the position of a particle of known momentum?’ is equally
meaningless.

However, despite its great insights, the Copenhagen interpretation really
does not address the problem of what constitutes a quantum measurement. Niels
Bohr seems to have believed that the macroscopic apparatus is obviously classical
with measurements corresponding to irreversible processes. Thus he does not ap-
pear to have distinguished between decoherence and collapse (neither word would
have been used then) in contrast to Schrödinger, whose cat illustrates exactly this
point. In the light of the work done since, a modern version of the Copenhagen
interpretation might stress the irreversibility of the measurement process rather
than the macroscopic nature of the apparatus. A basis should be chosen that is
appropriate to the possible irreversible outcomes of the whole set-up. After the
irreversible change has caused decoherence, the wavefunction should be taken
as having collapsed into the form appropriate to the measurement outcome. As
the wavefunction is a mathematical object with no direct physical significance,
collapse is not a physical process. However, neither is it a mathematical process
as we have to put it in ‘by hand’. A spontaneous-collapse theory in which col-
lapse and decoherence were coupled together so that the decoherence and collapse
times were equal could account for this. Otherwise, the Copenhagen interpreta-
tion may mark the end of the ‘Cartesian programme’, by which is meant that
Descartes’ vision of a complete mathematical description of the physical universe
may have reached its limit at the quantum measurement problem.
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Subjectivism

The formal theory of quantum mechanics as outlined in chapter 4 is often thought
to be an expression of the Copenhagen approach, but it was actually developed
largely by von Neuman in the early 1930s. In contrast to Bohr, he did understand
the measurement problem, but believed that collapse was a feature of human
experience associated with ‘psycho-physical parallelism’—by which is meant that
our mind, or psyche, is not part of the physical universe, but is ‘parallel’ to it. This
approach was further developed by E. P. Wigner. He pointed out that, in the last
analysis, all we can know about the physical universe is the information that enters
our mind through our senses and ends up in our consciousness. He therefore
postulated that the collapse of the wavefunction occurs when the information
enters a conscious human mind. Thus the particle, the counter and the cat are
all in states described by expressions of the form (13.34), until a person opens
the box and the information therein is transferred into a human mind; only at this
point does collapse occur.

Although this theory can be made consistent with all the observed facts,
it is generally considered unsatisfactory for a number of more or less obvious
reasons. First, it relies heavily on the concept of the human mind or consciousness
as something different in kind from the physical, material universe—including
the brain. Certainly, many people, including some philosophers and scientists,
believe this to be the case, but most would be unwilling to believe that the whole
existence of the physical universe depends on this postulate: our aim should
be to explain the natural world in objective terms consistent with it having an
existence independent of our presence and interactions with it. Second, it pushes
the whole problem into an inaccessible area; because if everything is ‘in the
mind’ and this ‘mind’ is not a physical thing subject to investigation, then the
whole of physics, and science in general, has no objective significance. Finally,
it is difficult to explain the fact that different ‘minds’ generally come to the
same conclusions about the results of physical measurements (in both classical
and quantum mechanics) unless we allow the existence of an objective physical
universe.

In recent years a combination of many worlds and subjectivism has been
suggested. This proposes that there is no collapse; the wavefunction evolves
according to the time-dependent Schrödinger equation and this is all there is in
the physical universe. However, we conscious observers are incapable of seeing
the world this way; it is in our nature that we can be aware of only one result of any
measurement process so, although the others are still out there, we are unaware
of them. It has been suggested that the problems of how different conscious
observers always see the same results, points to all our individual consciousnesses
being linked to some ‘universal consciousness’, one of whose jobs is to ensure that
this agreement occurs!
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13.5 The ontological problem

It should be clear by now that one of the fundamental problems thrown up by
quantum mechanics in general, and the measurement problem, in particular, is
the nature of reality—what is it that ‘really exists’ in the universe? What is our
ontology?

The construction of a physical theory has been compared to the drawing of
a map. In the same way that every point in a map has a direct counterpoint in
the terrain being represented, so every parameter of a classical theory (particle
position, momentum and energy, electromagnetic field etc.) has its counterpart in
the real physical world. Quantum mechanics is quite different. The Schrödinger
equation provides us with a map in terms of the wavefunction, but this has no
counterpart in reality—at least from the orthodox viewpoint. Indeed, the only real
events are the results of measurements and these are not part of the map, although
their probabilities of occurrence can be derived from the map if we assume that it
collapses from time to time.

Both hidden-variable theories and the many-worlds approach try to go
beyond quantum mechanics and construct a map of reality. In the case of
de Broglie–Bohm theory, both the wavefunction (as represented by the quantum
potential) and the Bohm particle are assumed to exist and their real values can
be predicted from the theory. If such a theory is ever developed with a self-
consistent ontology that is in agreement with the principles of relativity, it will
probably be greeted with enthusiasm and believed by most if not all. However,
unless and until this happens, we will have to be satisfied with something less.
In many-worlds theory, reality is the wavefunction and the map represents it
completely. Essentially this is why surprisingly many people find it attractive,
despite its ontological extravagance and its problems with defining probabilities.

A possible answer to the ontological problem is of course subjectivism:
the only things that we know exist are our sense impressions, so perhaps we
should define these as the only reality. Or we could adopt the approach known
as positivism in which, because it is impossible to verify the existence or non-
existence of anything beyond our sense impressions, we describe such questions
as meaningless.

If, however, we stay with the orthodox approach to quantum mechanics,
objective reality must be based on the idea of the irreversible measurement
process. Perhaps it is only the irreversible changes in the universe which have
a real, objective existence: any genuinely reversible changes are incapable of
observation, and statements about their existence or otherwise are consequently
meaningless. Moreover, by describing such reversible changes as ‘incapable
of observation’ we do not necessarily refer to the intervention of any human
observer: such reversible ‘events’ simply have no effect on the ensuing behaviour
of the universe. Quantum mechanics can therefore be thought of as a theoretical
system whereby we can predict, as far as this is possible, the sequence of
irreversible events in the universe. In the process we use quantities such as
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wavefunctions and talk about particles passing through slits without leaving any
record, but it is only the irreversible changes which can be considered as having an
objective existence. We have to live with the fact that the map does not represent
reality and the Cartesian programme is not complete. Many still find this difficult
to accept and the search for a better map will no doubt continue.

It was never the purpose of this chapter to provide answers to the conceptual
problems of quantum mechanics, but to demonstrate that such problems do exist
and that real questions can be asked in this area. In earlier chapters we have seen
many examples of the success of quantum mechanics in predicting and explaining
experimental results over a wide range of physics, and most students of the subject
will probably continue to be content to use it as a theoretical tool in their study and
research into particular phenomena. There is, after all, no dispute concerning the
correctness of quantum mechanics in predicting quantities such as energy levels,
transition probabilities, scattering cross sections, etc. Others will prefer to set the
subject aside and do something else. In any case it is to be hoped that all students
will understand that there are still some real problems in the grey area where
physics and philosophy meet. The influence of natural science on philosophy has
been very considerable, particularly in recent years, and the further consideration
of the fundamental problems of quantum mechanics may very well have far-
reaching effects on our understanding of our natural environment and, eventually,
of ourselves.

Problems

13.1 Consider a wavepacket, approximated by a square pulse of width w, approaching a barrier in one
dimension where the reflection probability is 2/3. According to de Broglie–Bohm theory, whereabouts
in the packet must the particle be in order to be (i) reflected and (ii) transmitted?

13.2 If the z component and total spin of a particle are known, then the ‘real spin’ vector, if it exists,
must presumably lie on a cone whose symmetry axis is parallel to z. Using this hidden-variable theory,
show that in the case of a spin-half particle with positive z component, the probability of a component
in a direction at an angle φ to the z axis also being positive is equal to

1 if φ < cot−1(21/2)

1− π−1 cos−1(2−1/2 cot φ) if cot−1(21/2) 6 φ < cot−1(−21/2)

0 if φ > cot−1(−21/2)

Show that this result agrees with quantum mechanics if φ equals 0, π/2 or π , but not otherwise.
If this theory were applied to measurements on correlated pairs, would it be a local or a non-local
hidden-variable theory?

13.3 Consider a hidden-variable theory based on the model described in problem 13.2 with the
additional condition that the result of a subsequent measurement of a component in the direction
defined by φ is to be determined by the sign of the component of the ‘real spin’ in a direction at an
angle φ′ to the z axis, where in the case of a spin-half particle

φ′ = cot−1{21/2 cos[2π sin2(φ/2)]}
Show that this theory produces identical results to quantum mechanics, but does not preserve locality
when applied to measurements on correlated pairs.

13.4 A variant of the Schrödinger’s cat experiment, in which the cat is replaced by a human observer,
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was suggested by E. P. Wigner. This observer—known as ‘Wigner’s friend’—is not to be killed,
however, but is to note and remember which of the possible quantum events occurs; subsequently the
box is opened and Wigner makes a ‘measurement’ by asking his friend what happened. Discuss this
procedure from the viewpoints of the different quantum theories of measurement, paying particular
attention to the problem of wavefunction collapse.
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